141 |
Thermodynamic optimisation of a boiler feed water desalination plant / Philippus Johannes van der WaltVan der Walt, Philippus Johannes January 2014 (has links)
In the process of electricity generation, water is used as the working fluid to transport energy from the fuel to the turbine. This water has to be ultrapure in order to reduce maintenance cost on the boilers.
For the production of ultrapure water, a desalination process is used. This process consists of an ultrafiltration pretreatment section, two reverse osmosis stages and a continuous electrodeionisation stage. Reverse osmosis desalination plants are, however, inherently inefficient with a high specific energy consumption. In an attempt to improve the efficiency of low recovery seawater applications, energy recovery devices are installed on the brine outlet of the reverse osmosis stages. The energy recovery device recovers the energy that is released through the high pressure brine stream and reintroduces it to the system.
The investigated desalination process has a fresh water feed with a salinity of 71 ppm and is operated at recoveries above 85%. The plant produces demineralised water at a salinity lower than 0.001ppm for the purpose of high pressure boiler feed.
A thermodynamic analysis determined the Second Law efficiencies for the first and second reverse osmosis sections as 3.85% and 3.68% respectively. The specific energy consumption for the reverse osmosis plants is 353 Wh/m3 and 1.31 Wh/m3. This was used as the baseline for the investigation. An exergy analysis determined that energy is lost through the brine throttling process and that a pressure exchanging system can be installed on all reverse osmosis brine streams. Energy recovery devices are untested in high recovery fresh water applications due to the low brine pressure and low brine flow.
It was determined that pressure exchanging systems can reduce the specific energy consumption of the first reverse osmosis stage with 12.2% whereas the second RO stage energy consumption can be improved with 7.7%. The Second Law efficiency can be improved by 25.6% for the first reverse osmosis stage while the efficiency is improved with 18.1% for the second stage. The optimal operating recovery for the PES is between 80% and 90%. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
|
142 |
Återvinning av näringsämnen från hushållsspillvatten med omvänd osmos / Recycling Nutrients from Municipal Wastewater by Reverse OsmosisBlennow, Kristina January 2005 (has links)
<p>Hammarby Sjöstad is a new district in Stockholm with high environmental standard. Stockholm Water Company evaluates a local wastewater treatment plant with cutting edge technology. The first step is an experimental treatment plant (Sjöstadsverket) with four parallel lines of treatment, each with a capacity to treat wastewater from 150 persons. Within the membrane technology subproject the possibility of using reverse osmosis (usually called RO) to regain nutrients is examined.</p><p>Reverse osmosis separates the incoming water in a clean permeate and a concentrate that, as the name indicates, is a more concentrated version of the incoming water. Using this method in wastewater treatment, a solution high in nutrients can be obtained without the use of chemical precipitation agent and with no production of sludge. The solution can then be recycled to use on farmland. The disadvantages of the RO technology include high energy consumption and sensitivity to membrane fouling.</p><p>The aim of this study was to investigate the possibility of using RO at Sjöstadsverket and, if possible, to evaluate the chance of obtaining concentrate that can be accepted as a fertiliser and permeate that falls below emission limits. The experiments were carried out with an RO plant with three membranes in series operated in batch mode; the dimensioned permeate flow being 100 l/h. The incoming water was permeate from a membrane bioreactor in the majority of the trial runs.</p><p>The results show that RO can be used in at least one of the lines of treatment. However the permeate exceeds the emission limits (phosphorus: 0,15 mg/l, nitrogen: 6 mg/l) while concentration in the concentrate is still too low. The limiting factor seems to be phosphorus. This could be solved with pre-precipitation of phosphorus or by reconstructing the RO plant to a two-stage system. The quota heavy metal – phosphorus in the concentrate is lower than the limit imposed by the Swedish Environmental Protection Agency but much higher than in human urine.</p> / <p>Som en del i miljöarbetet i Stockholms nya stadsdel Hammarby Sjöstad utvärderar Stockholm Vatten ett lokalt reningsverk med spetsteknologi. I ett första steg har ett reningsverk (Sjöstadsverket) med fyra parallella reningslinjer byggts. Varje linje har kapacitet att rena avloppsvatten från 150 personer. Inom delprojektet membranteknik undersöks möjligheterna att som slutsteg på flera av linjerna återvinna näringsämnen med hjälp av omvänd osmos (eller RO efter engelskans reverse osmosis).</p><p>En RO separerar det inkommande vattnet i ett rent permeat och ett koncentrat som, liksom namnet antyder, är en koncentrerad form av det inkommande vattnet. Inom avloppsvattenrening kan alltså en lösning med hög koncentration av näringsämnen uppnås utan fällningskemikalier och uppkomst av slam. Denna kan sedan återföras till jordbruket. Till teknikens nackdelar hör hög energiförbrukning och stor känslighet för partiklar som kan sätta igen membranen.</p><p>Syftet med denna studie var att undersöka om det går att använda RO på Sjöstadsverket och att i så fall utvärdera koncentratets och permeatets möjlighet att bli accepterat gödselmedel respektive godkänt utloppsvatten. Försöken gjordes satsvis på en anläggning med tre seriekopplade membran dimensionerad för ett totalt permeatflöde på 100 l/h. Det inkommande vattnet var, i nästan alla försök, permeat från en membranbioreaktor.</p><p>Resultaten visar att RO:n kan användas åtminstone på en av reningslinjerna. Däremot kan inte en tillräckligt hög koncentration uppnås i koncentratet utan att gränsvärdena (fosfor: 0,15 mg/l, kväve: 6 mg/l) i permeatet överskrids. Den begränsande faktorn verkar framför allt vara fosfor. Lösningen på problem skulle kunna vara förfällning av fosfor eller en utbyggnad av anläggningen till en två-stegsprocess. Kvoten tungmetallfosfor i koncentratet klarar Naturvårdsverkets gränsvärden för vad som får spridas på åkermark, men är klart högre än i humanurin.</p>
|
143 |
An Osmoreceptive Zone Around the Nucleus CircularisWallace, Forrest Layne 08 1900 (has links)
The nucleus circularis has been linked to a role in regulating osmotic thirst but evidence has also shown that full bilateral destruction of the nucleus circularis was not necessary to achieve a deficit in drinking behavior after an osmotic challenge. The present study attempted to answer two primary research questions. The first question was whether osmoreceptive cells existed around the nucleus circularis in a homogeneous fashion or if these cells existed in a structured fashion stretching from the nucleus circularis forward. The second question was whether animals with lesions of the nucleus circularis and the surrounding areas were different in normal daily water intake than animals with no lesions. The first question was approached by lesioning the nucleus circularis, the area one millimeter anterior to the nucleus circularis, one millimeter posterior to the nucleus circularis, one half of a millimeter medial to the nucleus circularis and using a sham group which had the electrode passed through the brain to a spot one millimeter above the nucleus circularis but passing no current. All animals were then given an osmotic challenge which consisted of half of each group with an injection of hypertonic saline while the other half of each group was given isotonic saline. After a five-day recovery period, the injection procedure was reversed. Water consumption on each test day was measured at ten-minute intervals for one hour. Difference scores were then computed by subtracting the amount of water consumed after hypertonic saline injection from the amount of water consumed after isotonic saline injection. The difference scores were then used in an analysis of variance which revealed a significant difference between groups. A subsequent post hoc test showed that the nucleus circularis group was different from all other groups except for the anterior lesion group which showed a trend in the same direction as the nucleus circularis group. The second research question was approached in two ways. The first way was to simply record the amount of water consumed in each twenty-four hour period. An analysis of variance showed no significant difference between any of the groups. The second method for testing the second research question was to put the animals on a twenty-three hour water deprivation schedule and measure the amount of water consumed during the one hour when water was available. Once again, no significant differences were observed.
|
144 |
Iontophoretic drug delivery to the nailDutet, Julie January 2008 (has links)
Basic information about nail behaviour, under passive and especially iontophoretic condition, lacks in the literature. Thus, this thesis aims to fill gaps in the nail understanding by studying the potential and feasibility of the application of iontophoresis to human nail. The iontophoretic and passive delivery of Sodium Fluorescein (SF) and Nile Blue Chloride (NBC) were studied, in vitro, in order to determine their pathways as well as their depth and uniformity of penetration into the nail. The permselective properties of the nail were investigated by characterizing the contribution of electroosmosis, using mannitol as a marker, and by studying the flux of two inorganic cations, sodium and lithium, during in vitro experiments. Finally, the feasibility of transungual iontophoresis and the extraction of sodium and chloride ions from the body through the nail plate were performed on a group of human volunteers. Iontophoresis led the fluorescent markers slightly deeper into the nail plate than passive diffusion. The delivery of the bianion and of the cation was not different. Both compounds mainly penetrated the nail via the transcellular pathway. Electroosmosis resulted only in a slight enhancement of the mannitol fluxes compared to passive diffusion and the fluxes presented high variability, especially at pH 7.4 and when the current was applied in the anode-to-cathode direction. The delivery of the two inorganic cations was significantly higher at pH 7.0 than at pH 4.0 and supported that nails hold a negative charge at physiological pH. Ions were easily extractable through the nail plate during in vivo iontophoresis and all volunteers' feedbacks supported iontophoresis as an acceptable technique. This thesis demonstrated the feasibility and potential of in vivo transungual iontophoresis.
|
145 |
Composite fouling of calcium sulfate and calcium carbonate in a dynamic seawater reverse osmosis unitWang, Yuan, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
Deposition of calcium carbonate (CaCO3) and calcium sulfate (CaSO4) causes serious processing problems and limits the productivity of seawater reverse osmosis (RO) desalination. The interactions between CaSO4 and CaCO3 in the dynamic seawater RO systems have been neglected previously because conventional studies mainly focused on individual compounds or mixed compounds in batch systems. The present work evaluates composite fouling behavior of CaSO4 and CaCO3 in a dynamic RO unit. The fouling experiments were performed at constant pressure and velocity by a partial recycling mode which permeate was withdrawn from the system during the recirculation of retentate to simulate the increasing of water recovery level. The fouling phenomena were monitored by the decline of flux. Scanning electron microscopy (SEM) with a combination of elemental dispersive x-ray microanalysis (EDS), and x-ray powder diffraction (XRD) was used to identify the morphological features, chemical compositions and crystalline phases of foulants. The interactions of CaSO4 and CaCO3 were investigated by the comparison between individual CaSO4 or CaCO3 fouling and composite fouling, and by varying SO42-/HCO3- molar ratio of the feed. A recently developed approach, Scaling Potential Index (SPI) incorporated with measured concentration polarization modulus (CP), for assessing the fouling tendency of inorganic salts on the membrane surface was validated in the dynamic tests. In addition, the effectiveness of two generic scale inhibitors, polyacrylic acid (molecular weight =2100, PA) and sodium hexametaphosphate (SHMP) were evaluated. Some of the highlights of the obtained results are as follows: ??????The precipitation kinetics, morphology and adhesive strength of composite scales were different from pure precipitates ??????CaSO4 precipitated as gypsum while CaCO3 precipitated as two crystalline phases: calcite and aragonite ??????The crystalline phases as well as precipitation kinetics were affected by SO42-/HCO3- ratio ??????Scaling Potential Index was able to predict the fouling tendency of CaSO4 and CaCO3 accurately ??????The dosage of PA and SHMP was effective to mitigate fouling Results of this work are significant, not only because they have made contribution to the fundamental understanding of composite inorganic fouling in RO membrane systems which was ignored previously, but also because they may play a key role in the development of scale control.
|
146 |
Management of produced water in oil and gas operationsPatel, Chirag V. 17 February 2005 (has links)
Produced water handling has been an issue of concern for oil and gas producers as it is one of the major factors that cause abandonment of the producing well. The development of effective produced water management strategies poses a big challenge to the oil and gas industry today. The conversion of produced water into irrigation or fresh water provides a cost effective tool to handle excessive amounts of the produced water. In this research we proposed on-site produced water treatment units configured to achieve maximum processing throughput. We studied various advanced separation techniques to remove oil and dissolved solids from the produced water. We selected adsorption as the oil removing technique and Reverse Osmosis (RO) as the dissolved solids removing technique as being the best for our purpose. We performed experiments to evaluate operating parameters for both adsorption and RO units to accomplish maximum removal of oil and dissolved solids from the produced water. We compared the best models fitting the experimental data for both the processes, then analyzed and simulated the performance of integrated produced water treatment which involves adsorption columns and RO units. The experimental results show that the adsorption columns remove more than 90% of the oil and RO units remove more than 95% of total dissolved solids from the produced water. The simulation results show that the proper integration and configuration of adsorption and RO units can provide up to 80% efficiency for a processing throughput of 6-8 gallons per minute of produced water. From an oil and gas producers viewpoint output from the produced water treatment system is a revenue generating source. The system is flexible and can be modified for the applications such as rangeland restoration, reservoir recharge and agricultural use.
|
147 |
Återvinning av näringsämnen från hushållsspillvatten med omvänd osmos / Recycling Nutrients from Municipal Wastewater by Reverse OsmosisBlennow, Kristina January 2005 (has links)
Hammarby Sjöstad is a new district in Stockholm with high environmental standard. Stockholm Water Company evaluates a local wastewater treatment plant with cutting edge technology. The first step is an experimental treatment plant (Sjöstadsverket) with four parallel lines of treatment, each with a capacity to treat wastewater from 150 persons. Within the membrane technology subproject the possibility of using reverse osmosis (usually called RO) to regain nutrients is examined. Reverse osmosis separates the incoming water in a clean permeate and a concentrate that, as the name indicates, is a more concentrated version of the incoming water. Using this method in wastewater treatment, a solution high in nutrients can be obtained without the use of chemical precipitation agent and with no production of sludge. The solution can then be recycled to use on farmland. The disadvantages of the RO technology include high energy consumption and sensitivity to membrane fouling. The aim of this study was to investigate the possibility of using RO at Sjöstadsverket and, if possible, to evaluate the chance of obtaining concentrate that can be accepted as a fertiliser and permeate that falls below emission limits. The experiments were carried out with an RO plant with three membranes in series operated in batch mode; the dimensioned permeate flow being 100 l/h. The incoming water was permeate from a membrane bioreactor in the majority of the trial runs. The results show that RO can be used in at least one of the lines of treatment. However the permeate exceeds the emission limits (phosphorus: 0,15 mg/l, nitrogen: 6 mg/l) while concentration in the concentrate is still too low. The limiting factor seems to be phosphorus. This could be solved with pre-precipitation of phosphorus or by reconstructing the RO plant to a two-stage system. The quota heavy metal – phosphorus in the concentrate is lower than the limit imposed by the Swedish Environmental Protection Agency but much higher than in human urine. / Som en del i miljöarbetet i Stockholms nya stadsdel Hammarby Sjöstad utvärderar Stockholm Vatten ett lokalt reningsverk med spetsteknologi. I ett första steg har ett reningsverk (Sjöstadsverket) med fyra parallella reningslinjer byggts. Varje linje har kapacitet att rena avloppsvatten från 150 personer. Inom delprojektet membranteknik undersöks möjligheterna att som slutsteg på flera av linjerna återvinna näringsämnen med hjälp av omvänd osmos (eller RO efter engelskans reverse osmosis). En RO separerar det inkommande vattnet i ett rent permeat och ett koncentrat som, liksom namnet antyder, är en koncentrerad form av det inkommande vattnet. Inom avloppsvattenrening kan alltså en lösning med hög koncentration av näringsämnen uppnås utan fällningskemikalier och uppkomst av slam. Denna kan sedan återföras till jordbruket. Till teknikens nackdelar hör hög energiförbrukning och stor känslighet för partiklar som kan sätta igen membranen. Syftet med denna studie var att undersöka om det går att använda RO på Sjöstadsverket och att i så fall utvärdera koncentratets och permeatets möjlighet att bli accepterat gödselmedel respektive godkänt utloppsvatten. Försöken gjordes satsvis på en anläggning med tre seriekopplade membran dimensionerad för ett totalt permeatflöde på 100 l/h. Det inkommande vattnet var, i nästan alla försök, permeat från en membranbioreaktor. Resultaten visar att RO:n kan användas åtminstone på en av reningslinjerna. Däremot kan inte en tillräckligt hög koncentration uppnås i koncentratet utan att gränsvärdena (fosfor: 0,15 mg/l, kväve: 6 mg/l) i permeatet överskrids. Den begränsande faktorn verkar framför allt vara fosfor. Lösningen på problem skulle kunna vara förfällning av fosfor eller en utbyggnad av anläggningen till en två-stegsprocess. Kvoten tungmetallfosfor i koncentratet klarar Naturvårdsverkets gränsvärden för vad som får spridas på åkermark, men är klart högre än i humanurin.
|
148 |
Natural Organic Matter: Isolation and BioavailabilityKoprivnjak, Jean-François 09 April 2007 (has links)
Electrodialysis (ED) experiments were conducted on reverse osmosis (RO)-concentrated solutions of NOM from six rivers. The ED processes successfully recovered 88 11% of TOC, and removed 83% 19% of SO42- and 67% 18% of H4SiO4. More importantly, the molar ratios of SO42- /TOC and H4SiO4 /TOC were reduced to a mean value of 0.0046 and 0.032, respectively, surpassing the goal for removal of SO42- (0.008) and almost achieving the goal for removal of H4SiO4 (0.021). The ED process can lower the SO42- /TOC ratio in samples whose initial SO42- /TOC ratios are already far below the limit of 0.008 used in this study. The coupled RO/ED process that has been described here offers a fast, simple, chemically mild (relative to other methods), and reproducible method of isolation of large quantities of relatively unfractionated, low-ash NOM from freshwaters.
RO/ED was also successfully used for isolating and concentrating marine dissolved organic matter (DOM). The effort successfully recovered a median of 72% of the TOC from 200 L samples within six to nine hours of processing through a combination of ED and RO, greatly exceeding the current norm of 30%. The relatively high recovery of DOM implies that classes of DOM previously missing are included in these samples and should yield new insight into the chemistry of marine DOM.
Freshwater samples processed by electrodialysis were analyzed for elemental composition and by capillary zone electrophoresis (CZE), 1H and 13C nuclear magnetic resonance spectroscopy (NMR), and electro-spray ionization mass spectrometry (ESI-MS). Bulk elemental composition, 1H- and 13C-NMR, and ESI-MS data provide evidence linking bioavailabilty to the bulk chemistry of NOM: the H/C and N/C molar ratios are positively and strongly correlated with bioavailability, as hypothesized.
Using an independent dataset (STORET) of water quality parameters, calculated BOD/TOC ratios were found to be moderately correlated with measured bioavailabilities and can be used as a surrogate for bioavailability of geochemically diverse riverine DOM.
|
149 |
An evaluation of membrane materials for the treatment of highly concentrated suspended salt solutions in reverse osmosis and nanofiltration processes for desalinationHughes, Trenton Whiting 15 May 2009 (has links)
This thesis presents a study to enhance and improve a zero liquid discharge
(ZLD) reverse osmosis process that uses seed crystals to promote crystallization of the
dissolved salts in the residual brine while it is being treated by identifying those
membrane materials that are most suitable for the process.
In the study, a one plate SEPA Cell module by GE Osmonics was used to
determine which membranes were most susceptible to fouling and/or membrane
hydrolysis. A cellulose acetate (CA), polyamide (PA) low MWCO, and PA high
MWCO membrane were tested under reverse osmosis conditions. The CA and thin film
(TF) membranes were also tested for nanofiltration.
The cell was operated under conditions that were determined to be optimum for
each membrane by the manufacturer, GE Osmonics. A high pressure, low flow, positive
displacement diaphragm pump circulated the saturated calcium sulfate solution with 2 %
suspended solids through the cell while the reject and permeate were recycled back to
the feed, thereby preserving a saturated solution to promote crystal growth and simulate
the seeded reverse osmosis process. The temperature was maintained constant by adding an ice pack to the feed vessel when necessary. The transmembrane pressure differential
was maintained constant by adjusting a back pressure valve on the concentrate outlet.
The results illustrate that if potable drinking water is the intended use, then the
nanofiltration cellulose acetate membrane should be used. If irrigation is the desired use,
then the nanofiltration thin film membrane should be used. Overall, the reverse osmosis
cellulose acetate membrane was observed to outperform all membranes when all
performance parameters were normalized. However, this membrane was observed to be
prone to degradation in a seeded slurry and therefore its lifetime should be analyzed
further. The polyamide membrane initially had a high water transport coefficient, but
fouling led to its rapid decline which was attributed to the membrane’s rough and
protrusive surface. A lifetime test on the thin film and cellulose acetate revealed that
when operated at their maximum pressure specified by GE Osmonics for a duration of 8
hours that no decrease in rejection occurred.
|
150 |
Management of produced water in oil and gas operationsPatel, Chirag V. 17 February 2005 (has links)
Produced water handling has been an issue of concern for oil and gas producers as it is one of the major factors that cause abandonment of the producing well. The development of effective produced water management strategies poses a big challenge to the oil and gas industry today. The conversion of produced water into irrigation or fresh water provides a cost effective tool to handle excessive amounts of the produced water. In this research we proposed on-site produced water treatment units configured to achieve maximum processing throughput. We studied various advanced separation techniques to remove oil and dissolved solids from the produced water. We selected adsorption as the oil removing technique and Reverse Osmosis (RO) as the dissolved solids removing technique as being the best for our purpose. We performed experiments to evaluate operating parameters for both adsorption and RO units to accomplish maximum removal of oil and dissolved solids from the produced water. We compared the best models fitting the experimental data for both the processes, then analyzed and simulated the performance of integrated produced water treatment which involves adsorption columns and RO units. The experimental results show that the adsorption columns remove more than 90% of the oil and RO units remove more than 95% of total dissolved solids from the produced water. The simulation results show that the proper integration and configuration of adsorption and RO units can provide up to 80% efficiency for a processing throughput of 6-8 gallons per minute of produced water. From an oil and gas producers viewpoint output from the produced water treatment system is a revenue generating source. The system is flexible and can be modified for the applications such as rangeland restoration, reservoir recharge and agricultural use.
|
Page generated in 0.0477 seconds