• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 3
  • 1
  • Tagged with
  • 30
  • 18
  • 16
  • 15
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Identificação de genes diferencialmente expressos em células humanas do osso alveolar cultivadas sobre diferentes superfícies de titânio / Identification of differentially expressed genes in human alveolar bone cells cultured on different titanium surfaces

Ferreira, Maidy Rehder Wimmers 19 November 2014 (has links)
Implantes de titânio têm sido extensivamente utilizados na Ortopedia e na Odontologia, principalmente como substitutos de elementos dentários ausentes. O titânio é um implante metálico de escolha devido à sua alta biocompatibilidade e resistência à corrosão, e também porque não provoca reações imunológicas, ao mesmo tempo em que promove a osseointegração. A biocompatibilidade do implante depende da resposta celular em contato com a sua superfície; sendo assim, mudanças nesta superfície podem provocar impactos benéficos na osseointegração através de alterações nas interações com as células presentes no local do implante, como, por exemplo, células osteoblásticas. O objetivo do presente trabalho foi caracterizar a resposta celular de células osteoblásticas humanas provenientes da crista óssea alveolar em contato com diferentes superfícies de titânio: controle (polido), nanotextura, nano+submicrotextura e microtextura rugosa. Os ensaios bioquímicos realizados foram: proliferação e viabilidade celular, quantidade de proteína total e atividade de fosfatase alcalina, além da detecção e quantificação de nódulos mineralizados, com a utilização do teste estatístico não paramétrico de Kruskal-Wallis e de Mann-Whitney com p≤0,05. Também foi realizada a avaliação da modulação gênica nas células em contato com as diferentes superfícies de titânio por meio do método de oligo microarray, utilizando lâminas Agilent formato 4x44 K e análise de microRNAs utilizando lâminas Agilent 8x15 K. A fim de identificar alterações na expressão gênica foi utilizado o programa GeneSpring GX. A expressão gênica foi validada pela reação de PCR quantitativa em tempo real (qRT-PCR). Observamos um pico na proliferação celular aos 10 dias de cultura e um aumento gradual da viabilidade celular ao longo do tempo. Entre as superfícies tratadas observou-se maior quantidade de proteína total na nanotextura em relação à nano+submicrotextura aos 10 dias de cultura (p≤0,05) e um aumento progressivo da atividade de fosfatase alcalina, com maior atividade na nanotextura em relação à nano+submicrotextura aos 14 dias de cultura (p≤0,05). Não houve diferença qualitativa na formação dos nódulos mineralizados, apesar de a microtextura rugosa apresentar maior quantidade de cálcio que a nanotextura (p≤0,05). Os resultados encontrados evidenciaram expressão diferenciada de 716 mRNAs (fold change≥2,0 e p≤0,05) e 32 microRNAs (fold change≥1,5 e p≤0,01) com funções associadas ao processo de osteogênese, principalmente mineralização, adesão celular, apoptose, proliferação e diferenciação celular. Os resultados sugerem que, diante do protocolo utilizado neste trabalho, o tratamento químico realizado na superfície do titânio provoca variações no metabolismo de células osteoblásticas tanto em nível celular como de expressão gênica / Titanium implants have been extensively used in orthopedics and dentistry, mainly as a replacement for missing teeth. Titanium is the metal implant of choice due to its high biocompatibility and corrosion resistance, as well as absence of immune response, while promoting osseointegration. The biocompatibility of the material depends on cellular response in contact with the surface; therefore, changes on this surface can have beneficial impacts on osseointegration through changes in interactions with cells at the implant site, such as osteoblastic cells. The objective of this study was to characterize the cellular response of osteoblastic cells from human alveolar crest in contact with different titanium surfaces: control (polished), nanotextured, nano+submicrotextured and rough microtexture. The performed biochemical assays included cell proliferation and viability, total protein content and alkaline phosphatase activity, in addition to the detection and quantification of mineralized nodules, using the non-parametric statistical tests of Kruskal-Wallis and Mann-Whitney (p≤0,05). Osteoblastic gene modulation was evaluated by means of an oligo microarray method using Agilent format 4 x 44 K slides and Agilent 8x15 K slides for microRNAs analysis. In order to identify changes in gene expression, it was used the GeneSpring GX program. Gene expression was validated by quantitative PCR real time (qRT-PCR). It was observed a peak in cell culture proliferation at 10 days and a gradual increase in cell viability over the periods. Among the treated surfaces, we observed an increase in the amount of total protein in nanotextured when compared to nano+submicrotextured at 10 days of culture (p≤0,05), and a progressive increase of alkaline phosphatase activity, with higher activity in nanotextured compared to nano+submicrotextured at 14 days of culture (p≤0,05). There was no qualitative difference among the groups with regards to mineralized nodules, although the rough microtexture group showed higher amounts of calcium than the nanotextured group (p≤0,05). Our results showed a differential expression of 716 mRNAs (fold change≥2,0 and p≤0,05) and 32 microRNAs (fold change≥1,5 and p≤0,01), with functions associated to the osteogenesis process, mainly mineralization, cell adhesion, apoptosis, cell proliferation and differentiation. The results suggest that, with the protocols used in this investigation, the treatments performed in the titanium surface induce changes in the metabolism of osteoblastic cells, both at the cellular as well as at the gene expression levels
12

Funcionalização de microtopografia de titânio com peptídeo sintético de colágeno I (P-15): efeitos sobre o desenvolvimento do fenótipo osteogênico in vitro / Development of the osteogenic phenotype in vitro on titanium surface microtopography functionalized with a type I collagen-derived synthetic peptide (P-15).

Karina Kimiko Yamashina Pereira 30 July 2010 (has links)
Os eventos celulares e extracelulares que ocorrem durante o processo de osseointegração do titânio (Ti) são influenciados pelas propriedades físicas e químicas de sua superfície. Modificações bioquímicas de topografias complexas de Ti permitem o desenvolvimento de novas superfícies de implantes funcionalizadas com moléculas bioativas, visando a promover a osteogênese de contato e a osseointegração. O objetivo do presente estudo foi avaliar os efeitos, sobre a osteogênese in vitro, da funcionalização de microtopografia de Ti com concentrações distintas de peptídeo sintético análogo a uma seqüência de amino-ácidos do colágeno tipo I, relacionada a adesão e diferenciação celulares. Células osteogênicas primárias derivadas de calvárias de ratos foram plaqueadas sobre superfícies de Ti: 1) usinada e lixada (Usinado); 2) com microtopografia (Plus); 3) Plus com recobrimento de hidroxiapatita (Plus+HA); 4) Plus+HA, com baixa concentração de P-15 (P-15 low); 5) Plus+HA, com alta concentração de P-15 (P-15 high). Por períodos de até 21 dias, foram avaliados: morfologia celular e estágios de adesão e espraiamento celulares; viabilidade celular, proporção de células no ciclo celular e número total de células; imunolocalização de proteínas da matriz extracelular não-colágena; expressão de marcadores do fenótipo osteoblástico por reação em cadeia da polimerase em tempo real (Real-time PCR); atividade de fosfatase alcalina (ALP); proporção de células em apoptose e formação de matriz mineralizada. Avaliaram-se, também, os aspectos topográficos das superfícies, por microscopia eletrônica de varredura (MEV) de alta resolução, e o molhamento de superfície, pelo método da gota séssil. As superfícies Plus modificadas apresentavam camada superficial constituída por agregados de material acicular, os quais eram menos evidentes em P-15 high. Todas as superfícies eram hidrofóbicas, sendo que a funcionalização com P-15 proporcionava tendência à hidrofilicidade em equilíbrio. Após 4 h, observou-se que as superfícies com microtopografia apresentavam menor proporção de células nos estágios 3 e 4 de espraiamento quando comparadas com o Usinado (p<0,05). A viabilidade celular por MTT demonstrou valores maiores para as superfícies Plus modificadas aos 3 dias (p<0,05). Em 1 dia, acúmulos extracelulares de osteopontina (OPN) foram evidentes apenas sobre Plus+HA, P-15 low e P-15 high, com maior extensão em 3 dias. Em 7 dias, áreas imunomarcadas para sialoproteína óssea (BSP) eram menos extensas sobre Plus e Plus+HA. Para os grupos com microtopografia, foram observados valores de RNAm: menores para RUNX2 em 7 dias em comparação ao Usinado; para fosfatase alcalina (ALP), maiores em 10 se comparados a 7 dias; menores para BSP e maiores para OPN em 7 e 10 dias, quando comparados ao Usinado. Em 10 dias, observou-se redução significante (p<0,05) na atividade de ALP nas superfícies com microtopografia em comparação ao Usinado. Aos 14 dias, formações nodulares típicas de matriz mineralizada, marcadas para BSP em sua periferia, foram observadas apenas nos grupos Usinado e Plus. No entanto, a quantificação do vermelho de Alizarina (ARS) revelou valores maiores para as culturas sobre superfícies Plus modificadas em 14 e 21 dias (p<0,05). Concluiu-se que a microtopografia de Ti Plus, nanoestruturada com HA para funcionalização de P-15, altera o processo de aquisição do fenótipo osteogênico in vitro, resultando no aumento da formação de matriz calcificada, em padrão predominantemente diferente ao de típicas formações nodulares observadas sobre superfícies planas na microescala. / Surface functionalization of metallic surfaces with bioactive molecules has been developed aiming to promote specific cellular response at biomaterial-tissue interface. The present study evaluated the effects of surface functionalization of a microstructured titanium (Ti) surface with a synthetic peptide (P-15) analogue of the cell-binding domain of collagen I on key parameters of the progression of the osteogenic phenotype in vitro. Calvaria-derived osteogenic cells were plated on Ti disks: i) Machined; ii) with microtopography (Plus); iii) Plus with hydroxyapatite coating (Plus+HA); iv) Plus+HA with a low concentration of P-15 (P-15 low); v) Plus+HA with a high concentration of P-15 (P-15 high). High resolution SEM analysis showed that Plus exhibited a complex microtopography. In addition, a superficial layer of nano-sized needle-shaped HA was noticed for all modified Plus surfaces, although less apparent for P-15 high. Whereas all surfaces were hydrophobic at time zero, biofunctionalization showed a tendency to hydrophilicity at equilibrium. At 4 hours, Plus and modified Plus surfaces exhibited a lower proportion of spread osteogenic cells. At day 3, cells were less spread on the microtopographies, showing long cytoplasmic extensions. Epifluorescence revealed a large extracellular OPN accumulation for modified Plus surfaces. Although at day 3 cell viability was higher for modified Plus surfaces, at day 7 no major differences were detected among groups. Real time PCR showed for Plus and modified Plus surfaces: i) lower levels for RUNX2 at day 7 and for BSP at days 7 and 10, and higher OPN levels at days 7 and 10 compared with Machined; ii) higher ALP levels at day 10 compared with day 7. At day 10, Plus and modified Plus surfaces showed lower ALP activity compared with Machined. At days 14 and 21, higher proportions of Alizarin red stained areas were detected for cultures grown on modified Plus surfaces. The modification of Ti Plus surface by means of HA coating and functionalization with peptide P-15 alters the osteogenic potential of osteoblastic cell cultures, leading to an enhancement in mineralized matrix formation.
13

The regulation of osteoprotegerin and dickkopf-1 production in osteoblastic cells

McCarthy, Helen Samantha January 2011 (has links)
Bone is a highly specialised living tissue and has both mechanical and metabolical functions. Remodelling of the bone ensures a healthy bone mass and is regulated by a trio of secreted proteins, namely receptor-activator of NFKB (RANK), receptor-activator of NFKB ligand (RANKL) and osteoprotegerin (OPG). OPG, a major regulator of osteoclastogenesis, bone resorption and vascular calcification, is produced by various cell types including mesenchymally derived cells, particularly osteoblastic cells. Wnt signalling also plays a role in maintaining healthy bone mass. Dickkopf- 1 (DKK-1) is a soluble inhibitor of Wnt signalling and its excessive expression contributes to bone loss in rheumatoid arthritis and multiple myeloma. Recently, NDKK-1 has been demonstrated to be over-produced in osteoblasts of patients with Paget's disease of bone (PDB). The osteoblastic cell lines MG63 and Saos-2 were subjected to a series of different growth factors, hormones and cytokines to investigate the production of OPG, DKK-1 and the expression of various Wnt proteins. These results demonstrate that during standard culture conditions, both OPG and DKK-1 production in osteoblastic cells depend on a factor present in serum. Serum deprivation resulted in the up-regulation of Wnt4 and Wnt11, while down-regulating the expression of Wnt7b. Serum-induced OPG and DKK-1 production and Wnt expression was found to be regulated via a number of different signalling pathways. OPG production and expression was stimulated by platelet-derived growth factor-AB (PDGF-AB) not only in MG63 and Saos-2 osteosarcoma cells, but also a mouse pre-osteoblastic cell line (MC3T3-E1) and human bone marrow stromal cells (BMSC). PDGF-AB was shown to act through the PDGF receptor, PKC, PI3K, ERK and P38 and not via NFKB or JNK. PDGF isoforms AA, BB and AB demonstrated a similar stimulation of OPG production. The importance of PDGF in fracture healing suggests a role for OPG production in countering bone resorption during the early phase of this process. BIO, an inhibitor of canonical Wnt signalling resulted in the down-regulation of DKK-1 and the up-regulation of WntSa. Phorbol ester (PE), a known stimulator of PKC resulted in the up-regualtion of DKK-1, Wnt4, WntTa and Wnt16. The effects of PE were inhibited by bisindolymaleamide but not staurosporine. DKK-1 production, but not expression, was observed to be stimulated by calcium along with an up-regulation of WntTb and a down-regulation of WntWa and Wnt11. Incubation of pre-stimulated cells with Triton-X demonstrated the ability of calcium to increase DKK-1 secretion. DKK-1 was shown to be significantly elevated in the serum of PDB patients compared to healthy controls and did not correlate with ALP levels. Immunohistochemistry demonstrated that DKK-1 production is increased in both osteoblasts and fibrotic cells within the marrow cavity in PDB patients compared to fracture callus. B-catenin was found to be localised to intercellular membranes of plump osteoblasts, demonstrating its alternate role as a cell adhesion protein. DKK-1 therefore may be a useful biomarker of PDB and that Dkk-1 may play a central role in the aetiology of PDB. In summary, the results presented in this thesis have investigated the ways in which OPG and DKK-1 production in osteoblastic cells can be modulated with various effectors and the effect of Wnt signalling. These results may therefore be beneficial to increase the understanding of bone biology, improve fracture repair and generate further research into the role DKK-1 and the osteoblast in the aetiology of PDB to enable improved treatments to be developed.
14

Avaliação histológica e microtomográfica do efeito de células osteoblásticas originárias da medula óssea em defeitos ósseos na calvária de ratos submetidos a um modelo experimental de osteorradionecrose / Histological and microtomographic evaluation of the effect of osteoblastic cells originating from the bone marrow on bone defects in the calvaria of rats submitted to an experimental model of osteorxadionerosis

Ana Luisa Riul Sório 30 June 2017 (has links)
A osteorradionecrose é uma séria e debilitante consequência da radioterapia da cabeça e pescoço, definida como uma área óssea que não sofre reparação após a irradiação. O objetivo deste trabalho foi analisar o efeito in vivo da presença de células mesenquimais da medula óssea carreadas em gel em defeitos provocados na calvária de ratos submetidos a um modelo experimental de osteorradionecrose. Foi realizada a obtenção de células osteoblásticas da medula óssea de ratos cultivadas in vitro e devidamente caracterizadas quanto ao seu fenótipo por meio de ensaios bioquímicos como proliferação celular, atividade de fosfatase alcalina e sua detecção in situ, além da detecção e quantificação de nódulos mineralizados. Posteriormente, ratos wistar foram submetidos ao protocolo de osteorradionecrose (irradiação com 20 Gy em dose única) e pareados com controles para em seguida serem realizados defeitos nas calvárias para inserção de células osteoblásticas da medula óssea previamente cultivadas in vitro juntamente com gel carreador e realizada a sutura. Os animais foram divididos em 4 grupos: controle (C), controle + células osteoblásticas (CC); osteorradionecrose (IR) osteorradionecrose + células osteoblásticas (IRc). Ao final de 4 semanas os animais foram sacrificados e realizados os seguintes ensaios: (1) análise histológica com base em cortes histológicos descalcificados (2) análise tomográfica por meio de micro-CT dos defeitos previamente criados. Os dados obtidos foram submetidos ao teste de normalidade e posteriormente à análise estatística para p<0,05. As células mesenquimais derivadas da medula óssea apresentaram fenótipo característico de células osteoblásticas após serem cultivadas em meio osteogênico, com aumento da proliferação, atividade de fosfatase alcalina e formação de nódulos mineralizados quando comparado com as células cultivadas em meio basal. A análise qualitativa dos cortes histológicos corados em hematoxilina-eosina e tricrômico de Masson demonstrou maior neoformação óssea no grupo IRc quando comparado ao grupo IR e similar ao grupos controles. A análise tomográfica revelou um aumento na espessura trabecular, densidade de conectividade, número trabecular e superfície óssea no grupo IRc em relação ao grupo IR. Os resultados sugerem que a inserção de células mesenquimais diferenciadas em osteoblastos favorece a neoformação de defeitos ósseos na presença de osteorradionecrose. / Osteoradionecrosis is a serious and debilitating consequence of head and neck radiotherapy, defined as a bone area that does not repair after irradiation. The purpose of this investigation was to analyze in vivo the presence of mesenchymal cells from bone marrow in calvariae defects of rats submitted to osteoradionecrosis. Cells were collected from rat femur bone marrow to perform characterization of osteoblastic phenotype by means of biochemical assays such as cell proliferation, alkaline phosphatase activity and its in situ detection and mineralization. Afterwards, male wistar rats were submitted to osteoradionecrosis protocol (20 Gy in a single dose) and paired with control animals. After 30 days, there were performed calvariae defects and placement of osteoblastic cells previously cultured with a gel vehicle inside the defects, which were sutured properly. The animals were divided in 4 groups: control (C), control + osteoblastic cells (CC), osteoradionecrosis (IR) osteoradionecrosis + osteoblastic cells (Irc). After 30 days, the animals were euthanized to perform the following analysis: (1) Histological evaluation by means of decalcified slide sections stained with hematoxilin-eosin and Masson trichrome; (2) Tomographic evaluation by means of adequate parameters. Data obtained were submitted to normality test and statistical analysis for p<0,05. The mesenchymal cells from bone marrow presented osteoblastic phenotype after being cultured in osteogenic medium, with higher ALP detection and activity, as well as an increase of mineralized nodules when compared to cells cultured in basal medium. Histological analysis showed that irradiation impaired bone neoformation and affected bone marrow composition, as well as the presence of osteoblasts and osteocytes. On the other hand, cell therapy in group IRc improved bone neoformation when compared to group IR, showing similarity to control groups. Tomographic analysis revealed an increase in trabecular thickness, density of connectivity, trabecular number and bone surface when compared to group IR. The results suggest that the placement of mesenchymal cells differentiated in osteoblasts may improve bone neoformation of defects created after the onset of osteoradionecrosis.
15

Identificação de genes diferencialmente expressos em células humanas do osso alveolar cultivadas sobre diferentes superfícies de titânio / Identification of differentially expressed genes in human alveolar bone cells cultured on different titanium surfaces

Maidy Rehder Wimmers Ferreira 19 November 2014 (has links)
Implantes de titânio têm sido extensivamente utilizados na Ortopedia e na Odontologia, principalmente como substitutos de elementos dentários ausentes. O titânio é um implante metálico de escolha devido à sua alta biocompatibilidade e resistência à corrosão, e também porque não provoca reações imunológicas, ao mesmo tempo em que promove a osseointegração. A biocompatibilidade do implante depende da resposta celular em contato com a sua superfície; sendo assim, mudanças nesta superfície podem provocar impactos benéficos na osseointegração através de alterações nas interações com as células presentes no local do implante, como, por exemplo, células osteoblásticas. O objetivo do presente trabalho foi caracterizar a resposta celular de células osteoblásticas humanas provenientes da crista óssea alveolar em contato com diferentes superfícies de titânio: controle (polido), nanotextura, nano+submicrotextura e microtextura rugosa. Os ensaios bioquímicos realizados foram: proliferação e viabilidade celular, quantidade de proteína total e atividade de fosfatase alcalina, além da detecção e quantificação de nódulos mineralizados, com a utilização do teste estatístico não paramétrico de Kruskal-Wallis e de Mann-Whitney com p&le;0,05. Também foi realizada a avaliação da modulação gênica nas células em contato com as diferentes superfícies de titânio por meio do método de oligo microarray, utilizando lâminas Agilent formato 4x44 K e análise de microRNAs utilizando lâminas Agilent 8x15 K. A fim de identificar alterações na expressão gênica foi utilizado o programa GeneSpring GX. A expressão gênica foi validada pela reação de PCR quantitativa em tempo real (qRT-PCR). Observamos um pico na proliferação celular aos 10 dias de cultura e um aumento gradual da viabilidade celular ao longo do tempo. Entre as superfícies tratadas observou-se maior quantidade de proteína total na nanotextura em relação à nano+submicrotextura aos 10 dias de cultura (p&le;0,05) e um aumento progressivo da atividade de fosfatase alcalina, com maior atividade na nanotextura em relação à nano+submicrotextura aos 14 dias de cultura (p&le;0,05). Não houve diferença qualitativa na formação dos nódulos mineralizados, apesar de a microtextura rugosa apresentar maior quantidade de cálcio que a nanotextura (p&le;0,05). Os resultados encontrados evidenciaram expressão diferenciada de 716 mRNAs (fold change&ge;2,0 e p&le;0,05) e 32 microRNAs (fold change&ge;1,5 e p&le;0,01) com funções associadas ao processo de osteogênese, principalmente mineralização, adesão celular, apoptose, proliferação e diferenciação celular. Os resultados sugerem que, diante do protocolo utilizado neste trabalho, o tratamento químico realizado na superfície do titânio provoca variações no metabolismo de células osteoblásticas tanto em nível celular como de expressão gênica / Titanium implants have been extensively used in orthopedics and dentistry, mainly as a replacement for missing teeth. Titanium is the metal implant of choice due to its high biocompatibility and corrosion resistance, as well as absence of immune response, while promoting osseointegration. The biocompatibility of the material depends on cellular response in contact with the surface; therefore, changes on this surface can have beneficial impacts on osseointegration through changes in interactions with cells at the implant site, such as osteoblastic cells. The objective of this study was to characterize the cellular response of osteoblastic cells from human alveolar crest in contact with different titanium surfaces: control (polished), nanotextured, nano+submicrotextured and rough microtexture. The performed biochemical assays included cell proliferation and viability, total protein content and alkaline phosphatase activity, in addition to the detection and quantification of mineralized nodules, using the non-parametric statistical tests of Kruskal-Wallis and Mann-Whitney (p&le;0,05). Osteoblastic gene modulation was evaluated by means of an oligo microarray method using Agilent format 4 x 44 K slides and Agilent 8x15 K slides for microRNAs analysis. In order to identify changes in gene expression, it was used the GeneSpring GX program. Gene expression was validated by quantitative PCR real time (qRT-PCR). It was observed a peak in cell culture proliferation at 10 days and a gradual increase in cell viability over the periods. Among the treated surfaces, we observed an increase in the amount of total protein in nanotextured when compared to nano+submicrotextured at 10 days of culture (p&le;0,05), and a progressive increase of alkaline phosphatase activity, with higher activity in nanotextured compared to nano+submicrotextured at 14 days of culture (p&le;0,05). There was no qualitative difference among the groups with regards to mineralized nodules, although the rough microtexture group showed higher amounts of calcium than the nanotextured group (p&le;0,05). Our results showed a differential expression of 716 mRNAs (fold change&ge;2,0 and p&le;0,05) and 32 microRNAs (fold change&ge;1,5 and p&le;0,01), with functions associated to the osteogenesis process, mainly mineralization, cell adhesion, apoptosis, cell proliferation and differentiation. The results suggest that, with the protocols used in this investigation, the treatments performed in the titanium surface induce changes in the metabolism of osteoblastic cells, both at the cellular as well as at the gene expression levels
16

Quantificação do potencial osteogênico do osso autógeno + células osteoblásticas implantados em defeito ósseo no rato tratado com cafeína / Quantification of the osteogenic potential of autogenous bone + osteoblastic cells implanted in bone defect in rats treated with caffeine

Rander Moreira Macedo 25 September 2009 (has links)
Estudos sugerem que a cafeína atua sobre o osso promovendo aumento da excreção de cálcio e inibição da proliferação de osteoblastos, aumentando o risco de fraturas, osteoporose e doença periodontal. Os efeitos da cafeína sobre o tecido ósseo dificultam a aplicação de implantes dentários devido à presença de grandes defeitos ósseos ou volume ósseo insuficiente. Vários métodos são propostos para a regeneração de defeitos ósseos, entre eles, o uso de diferentes tipos de enxertos, os quais demonstram capacidade em promover a formação óssea A despeito das desvantagens, o osso autógeno ainda é considerado a referência padrão como enxerto ósseo, devido ao seu potencial osteogênico, osteoindutor e osteocondutor. A engenharia tecidual óssea tem sido utilizada como uma estratégia para a regeneração óssea. As células tronco mesenquimais são consideradas multipotentes e podem replicar como células indiferenciadas, possuindo potencial para se diferenciarem em linhagens de osso, cartilagem, gordura e cartilagem. O objetivo deste estudo foi quantificar histomorfometricamente a reparação óssea pelo enxerto de uma associação de osso autógeno obtido da calota craniana e células osteoblásticas em defeitos ósseos produzidos pela extração dental de ratos submetidos à administração diária de cafeína. Os animais foram divididos em: Controle (c), osso autógeno (oa) e osso autógeno + células osteoblásticas (oa+co) e receberam injeções diárias intraperitonealmente de 30 mg/kg/dia de cafeína durante trinta dias, os homólogos receberam de solução salina. Os ratos foram sacrificados nos períodos de 7, 21 e 42 dias pós-cirurgia e as amostras teciduais foram processadas para a obtenção de secções finas (5 m) e coradas com HE. Através de um sistema de análise de imagens se estimou a fração de volume de osso, conjuntivo e coágulo, no defeito ósseo. Os resultados histológicos e histométricos mostraram que nos animais sob tratamento com cafeína houve uma menor formação óssea estatisticamente significante a 1%, e um retardo na reabsorção do coágulo sanguíneo quando comparado aos alvéolos dos animais sob tratamento com soro fisiológico. A análise qualitativa do fragmento de osso autógeno isoladamente ou associado às células osteoblásticas mostrou uma osteointegração progressiva e sem reação de corpo estranho nos animais tratados com soro fisiológico e, as células implantadas não propiciaram reações imunogênicas nem a formação tumoral, possibilitando um aumento (25%) na reparação óssea dos animais tratados com a cafeína. Conclui-se que o enxerto/implante das células osteoblásticas associadas ao osso autógeno da calota craniana foi capaz de compensar, nos períodos tardios, os efeitos deletérios da cafeína na reparação óssea alveolar. / Studies suggest that caffeine acts on the bone for increasing the excretion of calcium and inhibition of osteoblasts proliferation, increasing the risk of fractures, osteoporosis and periodontal disease. The effects of caffeine on bone difficult the application of dental implants due to large bone defects and insufficient bone volume. Several methods are proposed for the regeneration of bone defects, including the use of different types of grafts, which show ability to promote bone formation. Despite the disadvantages, the autogenous bone is still considered the gold standard as bone graft because the potential osteogenic, osteoinductive and osteoconductive. The bone tissue engineering has been used as a strategy for bone regeneration. The mesenchymal stem cells are considered multipotent and can replicate as undifferentiated cells, with potential to differentiate into lineages of bone, cartilage, fat and cartilage. This study aimed to quantify histomorphometrycally bone repair by grafts of a combination of autogenous bone obtained from the skull and osteoblastic cells in bone defects produced by dental extraction in rats subjected to daily administration of caffeine. The animals were divided into: Control (c), autogenous bone (ab) and autogenous bone + osteoblastic cells (ab + oc) and received daily injections intraperitoneally of 30 mg/kg/day of caffeine for thirty days, the counterparts received saline solution. The rats were sacrificed at times of 7th, 21st and 42nd days post-surgery and tissue samples were processed to obtain thin sections (5 m) and stained with HE. Through an image analysis system was estimated the fraction of volume of bone, collagen and blood clot in the bone defect. The histological and histometric results showed that in animals under treatment with caffeine had a lower bone formation statistically significant at 1%, and a delay in the resorption of blood clots when compared to the alveoli of animals under treatment with saline. The qualitative analysis of the fragment of autogenous bone alone or associated with osteoblastic cells showed a progressive osteointegration and no foreign body reaction in animals treated with saline, and implanted the cells not provided immunogenic reactions or tumor formation, allowing an increase (25%) on bone repair in animals treated with caffeine. It was concluded that the graft/implant of osteoblastic cells associated with autogenous bone from the skull was able to compensate in later periods, the deleterious effects of caffeine on alveolar boné repair.
17

Interações biológicas de cimentos ósseos a base de silicato de cálcio com diferentes soluções ativadoras : estudo in vitro e in vivo /

Santos, Hanna Flavia Santana dos January 2020 (has links)
Orientador: Luana Marotta Reis de Vasconcellos / Resumo: Os cimentos de silicatos de cálcio (CaSiO3) podem ser utilizados em tratamentos de reparo ósseo, tanto para aplicações médicas quanto odontológicas. A fim de atender às necessidades da engenharia de tecidos e aprimorar o leque de opções foram produzidos três cimentos de silicatos de cálcio utilizando α-wollastonita como precursora, juntamente com soluções ativadoras com potencial hidrogeniônico neutro, com três diferentes cátions, Na+, K+ e NH4+. A topografia superficial dos cimentos foi analisada por microscopia eletrônica de varredura com canhão de emissão por campo (MEV-FEG). Estudos in vitro, in vivo, relacionados a capacidade de interação com microrganismos e testes biomecânicos foram realizados para avaliar a influência de diferentes soluções ativadoras de fosfato e carbonato nos cimentos produzidos. Nos testes in vitro foram utilizadas células mesenquimais provenientes de fêmures de ratos. Após períodos pré-determinados foram realizados os testes de viabilidade celular, conteúdo de proteína total (PT), atividade de fosfatase alcalina (ALP) e formação de nódulos de mineralização. Para análise da interação microbiana a formação dos biofilmes monotípicos de S. aureus, P. aeruginosa e C. albicans foi mensurada. Posteriormente, os cimentos obtidos, a base de silicato de cálcio, foram submetidos ao estudo in vivo utilizando 20 ratos Wistars que passaram por procedimento cirúrgico para confecção de um defeito crítico de 3,0 mm nas tíbias direita e esquerda. Após a eutanásia, ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Calcium silicate cements (CaSiO3) can be used in bone repair treatments, both for medical and dental applications. In order to meet the needs of tissue engineering and improve the range of options, three calcium silicate cements were produced using αwollastonite as a precursor, with an activating solution of neutral potential hydrogen ionic, made of three different cations Na+, K+ and NH4 +. A superficial topography of the cements was analyzed by Field Emission Gun Scanning Electron Microscopy (SEMFEG). In vitro, in vivo studies related to the ability to interact with microorganisms and biomechanical tests were carried out to evaluate the influence of different phosphate and carbonate activating solutions in the cements produced. In in vitro tests, mesenchymal cells from rat femurs were used. After predetermined periods, cell viability tests, total protein content (PT), alkaline phosphatase activity (ALP) and formation of mineralization nodules were performed. For the analysis of microbial interaction, the formation of monotypic biofilms from S. aureus, P. aeruginosa and C. albicans was measured. Subsequently, the obtained cements, based on calcium silicate, were subjected to an in vivo study using 20 Wistars rats that underwent a surgical procedure to make a 3.0 mm critical defect in the right and left tibiae. After euthanasia, the pieces were submitted to histological, histomorphometric analysis and biomechanical flexion test of three points. The data obtained were statisti... (Complete abstract click electronic access below) / Mestre
18

Pathogenesis of Osteoblastic metastasis in Prostate Cancer: Role of Animal Models

Thudi, Nanda Kumar 03 September 2009 (has links)
No description available.
19

Osteogenic Scaffolds for Enhanced Graft-Bone Integration in Ligament Tissue Engineering

Gadalla, Dina Mohamed Adly 22 June 2020 (has links)
Among the most common knee ligament injuries are those to the anterior cruciate ligament (ACL). Annually, approximately 350,000 people require surgical ACL reconstruction, accounting for more than $6 billion of health-care costs in the United States alone. An injured ACL loses its functions as it cannot heal with larger injuries and heals slowly with smaller ones. This may introduce complications, such as abnormal joint kinematics and deterioration, prior to complete rupture. Although the use of an autologous graft is the current gold standard for ACL reconstruction surgery, it is associated with donor site morbidity and a decrease in mechanical strength at the donor site. The use of allogenic grafts instead of autografts introduces the risk of disease transmission. Furthermore, integration of soft tissue grafts (e.g., hamstring tendon) to native bone is slow and risks graft pullout. To circumvent these limitations, tissue engineering seeks to fabricate suitable biomaterials that could replace the entire ACL, stimulate regeneration of the ligament tissue, and integrate with host bone tissue. Numerous efforts have led to the development of complex, multi-phased biomaterial scaffold designs that are intended to deliver an array of cell types and biological cues. Particularly, scaffolds that possess bone-regenerating biomaterials at the ends are envisioned to facilitate rapid integration with the femur and tibia. Electrospun fiber scaffolds continue to be regularly utilized for their high tensile strength, flexibility, and ability to bend. Nevertheless, fibrous scaffolds are inert and require the incorporation of trophic factors to guide tissue regeneration. Additionally, electrospun fibers are often densely packed, which can hinder cell infiltration and subsequent tissue formation. The objective of this work was to guide bone remodeling through the incorporation of trophic factors with 1) electrospun fiber scaffolds or 2) nanoparticles that could be combined with electrospun fiber scaffolds, and 3) to develop model three-dimensional fiber-hydrogel composites that support cell viability and proliferation. Two approaches were utilized to present the trophic factor bone morphogenic protein (BMP)-2 to stimulate bone formation. In the first approach, electrospun fibers were modified through the adsorption or covalent conjugation of BMP-2. These fibers exhibited increased BMP-2 concentrations with covalent conjugation over adsorption, and the incorporation of heparin into the fibers improved both adsorption and conjugation. Mesenchymal stem cells (MSCs) – that have the capacity to differentiate into osteoblastic cells – were able to attach and proliferate on all films yet appeared to do so to a greater extent on surfaces with higher heparin contents. Additionally, markers of osteoblastic differentiation were significantly higher on surfaces with covalently conjugated BMP-2 than on those with adsorbed BMP-2. In the second approach, a nanoparticle system was produced to control BMP-2 delivery and release. Importantly, this flexible system can be fabricated separately, and then combined with a scaffold for tissue regeneration. In this approach, BMP-2 was combined with chitosan nanoparticles through adsorption, encapsulation, or covalent conjugation. The particular BMP-2 incorporation technique had no significant effect on BMP-2 incorporation efficiencies, but affected particle size and BMP-2 release kinetics. Specifically, covalent conjugation method caused the aggregation of particles while adsorption method allowed the most sustainable release. MSCs cultured in the presence of the different particles survived and proliferated, but only particles with adsorbed BMP-2 stimulated osteoblastic differentiation. Finally, three-dimensional fiber-hydrogel composites of various models were fabricated to mimic the complexity of full-sized scaffolds for ACL regeneration, and to study cell infiltration, differentiation, and tissue formation. A collagen hydrogel phase was introduced to electrospun fiber scaffolds using different approaches. MSCs seeded within a thin collagen layer were able to proliferate, sense underlying substrate and spread according to fiber orientation, while those within thicker layers were not. Additionally, cells initially present in only the collagen phase infiltrated to the fiber phase. These results demonstrate that minor changes in fabrication steps to combine the two phases could significantly alter cell function during the formation of three-dimensional fiber-hydrogel composites for tissue regeneration. / Doctor of Philosophy / The anterior cruciate ligament (ACL) is one of four ligaments that connect the thigh bone to the shin bone and stabilize the knee. Injuries to the ACL often occur during high impact sports, and ruptures can necessitate surgical intervention. ACL reconstruction surgery involves drilling tunnels through the ends of leg bones, deploying the tissue graft through the knee joint and bone tunnels, and anchoring it within the bone tunnels. The most common grafts are autografts that use tendons of the patient's own body or allografts that are obtained from cadavers. The complications associated with autografts include pain at the site of tissue harvest, while allografts risk disease transmission. Additionally, directly affixing a soft tissue graft (e.g., the hamstring tendon) to bone within the bone tunnel suffers from slow tissue integration and risk of pull-out. Tissue engineering is a field that seeks to develop devices to direct the regeneration of damaged tissues and organs. In the context of ACL repair, it seeks to achieve a biomaterial device with the properties of ACL, that can both guide the regeneration of ligament tissue and facilitate integration with bone tunnels, eliminating the need for autografts and allografts and their associated risks. Toward the development of an engineered ACL, this work focuses on improving graft-to-bone integration. In the first project, fibrous materials are surface-modified with bone morphogenetic protein (BMP)-2 (a bone-forming protein), and then tested for their ability to stimulate formation of a bone-like tissue in cell culture. In the second project, the deployment of BMP-2 either on the surface of or within nanoparticle delivery vehicles is evaluated as an alternative strategy to stimulate bone-like tissue formation. The third project explores the inclusion of a hydrogel phase to facilitate cell infiltration and bone-like tissue formation within fibrous materials. Together these studies provide insights into how the architecture of the engineered tissue and the deployment of bone-forming proteins can be used to enhance ACL regeneration.
20

The Use of Dynamic Fluid Flow Strategies for Bone Tissue Engineering Applications

Sharp, Lindsay Ann 21 October 2009 (has links)
Bone is the second most transplanted tissue in the body, with approximately 2.2 million bone graft procedures performed annually worldwide. Currently, autogenous bone is the gold standard for bone grafting due to its ability to achieve functional healing; however, it is limited in supply and results in secondary injury at the donor site. Tissue engineering has emerged as a promising means for the development of new bone graft substitutes in order to overcome the limitations of the current grafts. In this research project, the specific approach for bone tissue engineering involves seeding osteoprogenitor cells within a biomaterial scaffold then culturing this construct in a biodynamic bioreactor. The bioreactor imparts osteoinductive mechanical stimuli on the cells to stimulate the synthesis of an extracellular matrix rich in osteogenic and angiogenic factors that are envisioned to guide bone healing in vivo. Fluid flow, which exerts a hydrodynamic shear stress on adherent cells, has been identified as one of the strongest stimuli on bone cell behavior. It has been shown to enhance the deposition of osteoblastic matrix proteins in vitro, and is particularly important for the delivery of oxygen and nutrients to cells within large scaffolds suitable for bone tissue regeneration. In particular, dynamic flow profiles have been shown to be more efficient at initiating mechanotransductive signaling and enhancing gene expression of osteoblastic cells in vitro relative to steady flow. However, the molecular signaling mechanisms by which bone cells convert hydrodynamic shear stress into biochemical signals and express osteoblastic matrix proteins are not fully understood. Therefore, the overall goal of this research project was to determine the effect of dynamic fluid flow on mechanotransductive signaling and expression of bioactive factors and bone matrix proteins. In the first study, an intermittent flow regimen, in which 5 min rest periods were inserted during fluid flow, was examined. Results showed that signaling molecules, mitogen activated protein kinases (MAPKs) and prostaglandin E2, were modulated with the flow regimen, but that expression of bone matrix proteins, collagen 1α1, osteopontin, bone sialoprotein (BSP), and osteocalcin (OC), were similar under continuous and intermittent flow. Thus, this study suggested that variation of the flow regimen modulates mechanotranductive signaling. In the second study, four flow conditions were examined: continuous flow, 0.074 Hz, 0.044 Hz, and 0.015 Hz pulsatile flow. This study demonstrated that pulsatile flow enhances expression of BSP and OC over steady flow. Similarly, bone morphogenetic protein (BMP)-2 and -7 were enhanced with pulsatile flow, while BMP-4 was suppressed with all flow conditions, suggesting that the mechanism by which fluid flow enhances bone matrix proteins may involve the induction of BMP-2 and -7, but not BMP-4. In the third study, the molecular mechanism by which fluid flow simulates expression of BMPs was examined. Results from this study suggest that this mechanism may involve activation of MAPKs, but BMP-2, -4, and -7 are regulated through multiple different signaling pathways. Overall, the results from this research demonstrate that dynamic flow modulates mechanotransductive signaling and expression of osteoblastic matrix proteins by osteoblast cells. In particular, BMPs, important for formation in vivo, were shown to be induced by fluid flow. Therefore, this work may be beneficial in understanding and developing 3D perfusion culture systems for the creation of a clinically effective engineering bone tissue. / Ph. D.

Page generated in 0.1208 seconds