• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation on the Use of Small Aperture Telescopes for LEO Satellite Orbit Determination

Curiel, Luis R, III 01 December 2020 (has links) (PDF)
The following thesis regards the use of small aperture telescopes for space domain awareness efforts. The rapidly populating space domain was motivation for the development of a new operation scheme to conduct space domain awareness feasibility studies using small telescopes. Two 14-inch Schmidt-Cassegrain Telescopes at the California Polytechnic State University and the Air Force Research Lab in Kirtland AFB, NM, in conjunction with a dedicated CCD camera and a commercial DSLR camera, were utilized to conduct optical observations on satellites in Earth orbit. Satellites were imaged during August 2019, and from January 2020 to March 2020, resulting in the collection of 77 valid images of 16 unique satellites. These images were used to obtain celestial spherical coordinates, which were used in Gauss and Double-R angles-only initial orbit determination methods. Initial orbit determination methods successfully produced valid results, reaffirming the feasibility of using small aperture telescopes for such methods. These orbit determinations were used to propagate orbit states forward in time to determine the feasibility of future imaging of the targets with the same apparatus. Propagation results demonstrated that initial orbit determinations rapidly decayed in accuracy over distant times and are most accurate for immediate satellite passes. In addition, an attempt to combine multiple initial orbit determinations using Lambert’s problem solutions was made. Combination of these multiple initial orbit determinations resulted in either no orbit state accuracy improvement compared to individual initial orbit determinations, or a decrease in accuracy compared to these methods. Ultimately, efforts demonstrated that small telescope usage is feasible for orbit determination operations, however there may be a need for hardware and operational revisions to improve the ability of the apparatus.
12

Development of Selected Mathematical Instruments Representing Angular, Logarithmic and Arithmetic Computation

Troxell, Lillian L 01 January 1927 (has links) (PDF)
The Sextant in its earliest known form consisted of divided circles and compasses with simply sights. An early Creek astronomer of the second century after Christ, Claudius Ptolemaeus, or more commonly called Ptolemy, wrote a book entitled Megale Syntaxis tes Astron- omias, also known by the Arabic title Almagest. The instrument described in this book was called the Astrolable and was used to measure the angular distance between stars. It was made of two concentric vertical circles, the largest and outer circle was about sixteen inches in diameter with graduated arc; the central ring was movable and carried the two sights.
13

Atmospheric, Orbital, and Eclipse-Depth Analysis of the Hot Jupiter HAT-P-30-WASP-51Ab

Foster, Andrew SD 01 January 2016 (has links)
HAT-P-30-WASP-51b is a hot-Jupiter exoplanet that orbits an F star every 2.8106 days at a distance of 0.0419 AU. Using the Spitzer Space Telescope in 2012 (Spitzer Program Number 70084) we observed two secondary eclipses at 3.6 and 4.5 μm. We present eclipse-depth measurements of 0.177 ± 0.018 % and 0.247 ± 0.024 % and estimate the infrared brightness temperatures to be 1990 ± 110 K and 2080 ± 130 K for these two channels, respectively, from an analysis using our Photometry for Orbits, Eclipses, and Transits (POET) pipeline. These may be grazing eclipses. We also refine its orbit using our own secondary-eclipse measurements in combination with radial- velocity and transit observations from both professional and amateur observers. Using only the phase of our secondary eclipses, we can constrain e cos(ω) where e is the orbital eccentricity and ω is the argument of periastron to 0.0058 ± 0.00094. This is the component of eccentricity in the plane of view,. This small but non-zero eccentricity is independent of the effects that stellar tides have on radial-velocity data. When including radial velocity data in our model, our Markov chain finds an e cos(ω) of 0.0043 ± 0.0007. We constrain the atmospheric temperature profile using our Bayesian Atmospheric Radiative Transfer code (BART), a large lower bound (700 km) for the scale height, and the potential for high quality transit spectroscopy observations.
14

Direct measurement of the 114Cd(n, gamma)115Cd cross section in the 1 eV to 300 keV energy range

Assumin-Gyimah, Kofi Tutu Addo 08 August 2023 (has links) (PDF)
The large thermal cross section of cadmium makes it ideal for many practical applications where screening of thermal neutrons is desired. For example, in non-destructive assay techniques, or for astrophysical studies of the s-process. All such applications require precise knowledge of the neutron-capture cross section on cadmium. Although there are some data on neutron-capture cross sections particularly at thermal energies and at energies relevant for astrophysics, there is very little data at most other energies. Further, the evaluated cross sections from the ENDF and JENDL databases disagree at high energies. Therefore, there is a critical need for precise knowledge of the 114Cd(n, gamma)115Cd cross section over a large range of incident neutron energies. We performed a direct measurement of the neutron-capture cross section at the Los Alamos Neutron Science Center (LANSCE) using the Detector for Advanced Neutron Capture Experiments (DANCE). A highly enriched (∼$99%), 100 mg pressed metallic pellet sample of 114Cd was used to perform the neutron-capture measurements in the range of 1 eV to 300 keV using the white neutron source available at LANSCE. Additional neutron capture data were also taken on highly enriched samples of 112Cd and 113Cd to enable careful background subtraction of even the small contaminants found in the 114Cd sample. We used a large energy sum windows around the Q-value to circumvent any complication that may arise from populating the 180 keV isomeric (T1/2 = 44.56d) state in 115Cd.
15

Using Radio Relics to Constrain the Dynamics of 1 RXS J0603.3+4214

Finney, Emily Q 01 January 2014 (has links)
Galaxy clusters, the most massive gravitationally bound objects in the universe, provide an important setting for exploring the structure and interactions of matter in the cosmos. When galaxy clusters merge, there is ample opportunity to examine interactions between densely-packed halos of luminous and dark matter; thus, understanding the dynamics of merging clusters provides insight into understanding properties of dark matter. This paper examines the galaxy cluster 1 RXS J0603.3+4214 (“Toothbrush Cluster”), incorporating information about the polarization of its associated radio relics into Monte Carlo simulations to constrain knowledge about its inclination angle, time since collision, and the velocity and separation distance between its subclusters. We find that the collision velocity, time since merger, and 3D separation between subclusters are well-constrained, which allows for more accurate analysis of the history of the merger. This type of constraint could be applied to a variety of merging systems. Additionally, this constraint may allow opportunity for exploring the validity of different models of dark matter.
16

Modeling the Construction and Evolution of Distributed Volcanic Fields on Earth and Mars

Richardson, Jacob Armstrong 21 March 2016 (has links)
Magmatism is a dominant process on Earth and Mars that has significantly modified and evolved the lithospheres of each planet by delivering magma to shallow depths and to the surface. Two common modes of volcanism are present on both Earth and Mars: central-vent dominated volcanism that creates large edifices from concentrating magma in chambers before eruptions and distributed volcanism that creates many smaller edifices on the surface through the independent ascent of individual magmatic dikes. In regions of distributed volcanism, clusters of volcanoes develop over thousands to millions of years. This dissertation explores the geology of distributed volcanism on Earth and Mars from shallow depths (~1 km) to the surface. On long time scales, distributed volcanism emplaces magmatic sills below the surface and feeds volcanoes at the surface. The change in spatial distribution and formation rate of volcanoes over time is used to infer the evolution of the source region of magma generation. At short time scales, the emplacement of lava flows in these fields present an urgent hazard for nearby people and infrastructure. I present software that can be used to simulate lava flow inundation and show that individual computer codes can be validated using real-world flows. On Mars, distributed volcanism occurs in the Tharsis Volcanic Province, sometimes associated with larger, central-vent shield volcanoes. Two volcanic fields in this province are mapped here. The Syria Planum field is composed three major volcanic units, two of which are clusters of 10s to >100 shield volcanoes. This area had volcanic activity that spanned 900 million years, from 3.5-2.6 Ga. The Arsia Mons Caldera field is associated with a large shield volcano. Using crater age-dating and mapping stratigraphy between lava flows, activity in this field peaked at ~150 Ma and monotonically waned until 10-90 Ma, when volcanism likely ceased.
17

Verification of an Activity Method Approach to Determine the alpha-Partial Width of the 4.03 MeV State of Ne-19

Manwell, Spencer 10 1900 (has links)
<p>This thesis describes a new experimental approach that has been designed to determine the alpha-branching ratio of the 4.03-MeV excited state of Ne-19. A precise measurement of this quantity is needed to reduce reaction rate uncertainties in Type I x-ray bursts models. The alpha-branching will be measured by the detection of the beta+ activity of the associated alpha-decay product. This activity method has been modelled using two separate simulations. The first, a Monte Carlo code to simulate the reaction process and energy distributions of the decay products. Secondly, a GEANT4 simulation was created to predict the detector response to the O-15 beta+ activity. Along with the simulations two NaI(Tl) detectors, which were customized to this experiment's geometric constraints, have been tested and their response and resolution have been determined. The results of this work will be used to refine the experimental setup such that the proposed test run and eventual alpha-branching ratio measurement of the 4.03-MeV state will be successful. With the results of the simulations and subsequent yield calculations, it has been found that reasonable statistical significance in the O-15 yield from the 4.03-MeV excited state in Ne-19 can be achieved within 10 days of beamtime.</p> / Master of Science (MSc)
18

An Investigation Into the Use of Amateur Astronomy Equipment For Optical Orbit Determination Using a Mobile Telescope Platform

Govaars, Johan C 01 December 2024 (has links) (PDF)
The process of optical orbit determination has long been in the domain of large organizations and stationary observatories with highly specialized scientific equipment. This thesis seeks to determine not only if satellites can be captured regularly using purely commercial-off-the-shelf (COTS) equipment, but also if initial orbit determinations can be made using that data. Moreover, the use of a mobile telescope platform allows users to circumvent the restrictions of fixed observatories such as low horizon viewing restrictions or existing light pollution. A completely COTS setup was utilized that included an 8-inch Celestron NextStar 8SE telescope with an f/6.3 focal reducer and Canon Rebel T7i DSLR camera. Ten successful, complete observations of satellites were performed at San Geronimo Road Turnout in Cayucos. The DSLR utilized provided nearly double the field-of-view and ten times the resolution of previously used cameras while simultaneously reducing the overall cost of the setup to just over $4000. Initial orbit determination (IOD) solutions utilizing Gauss Extended and Gauss Extended with assumed circular-orbit(ACO) provided orbital parameters with as low as 0.02% difference from government generated two-line elements (TLEs).
19

Anthracroronene in Astrophysical Water-Ice Analogs

Korsmeyer, Julie 01 January 2019 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are the most abundant large organic molecules in space. They are thought to be the main contributor to the unidentified infrared (UIR) emission bands from the interstellar medium (ISM) for several reasons: UIR intensities correspond to carbon abundance, indicating the presence of a carbon-based molecule; UIRs are found in extremely harsh environments which means the source must be a stable molecule. The most important evidence is if the bands in mid-infrared (MIR) or 'fingerprint' region match those of PAHs. Through the infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbons a compound's unique neutral and ionized vibrational modes can be identified. In this work, the PAH anthracoronene (AntCor, C36H18) is suspended in a matrix of water-ice, irradiated with ultraviolet (UV) light, and then analyzed using Fourier Transform Infrared (FTIR) spectroscopy. AntCor has not been studied in water ice before, and therefore the vibrational transition data collected (i.e. band positions and intensities) has been compared to coronene and anthracene, the parent molecules, and with theoretical predictions made using density functional theory. The data from this work will be incorporated into the NASA Ames PAH IR Database, where it will be applied to astronomical observations of the unidentified infrared emissions of the ISM, as well as observations of infrared absorption features in dense molecular clouds.
20

Amino Acid Synthesis in Meteoritic Parent Bodies of Carbonaceous Chondrites

Cobb, Alyssa K. 10 1900 (has links)
<p>The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. We investigate the carbonaceous chondrite subclasses CI, CM, CR, CV, and CO, which contain high levels of water and organic material, including amino acids. These subclasses span petrologic types 1 through 3, indicating the degree of internal chemistry undergone by the meteoritic parent body. The goal of this thesis is two-fold: to obtain a comprehensive view of amino acid abundances and relative frequencies in carbonaceous chondrites, and to recreate these patterns via thermodynamic computational models.</p> <p>We collate available amino acid abundance data for a variety of meteorites to identify patterns in total abundance and relative frequencies. We consider only a set of 20 proteinogenic alpha-amino acids created via a specific chemical pathway called Strecker synthesis. We plot abundances of individual amino acids for each subclass, as well as total abundances across all subclasses. We see a predominance in abundance and variety of amino acids in the CM and CR subclasses, which contain concentrations of amino acids greater by several orders of magnitude than other carbonaceous subclasses. These subclasses correspond to an aqueous alteration temperature range of 200 deg. C to 400 deg. C. Within the CM2 and CR2 meteorites, we identify trends in the relative frequencies of amino acids in preparation for computational modeling.</p> <p>Now having a baseline observed amino acid abundance plot, we recreate both the total amino acid abundance pattern as well as the relative frequency of amino acids within the CM2 chondrite subclass using computational models. We use thermodynamic theory of Gibbs free energies to calculate the output of amino acids in a meteoritic parent body assuming chemical equilibrium and some set of initial concentrations of organic material. Our model recreates abundance patterns in the temperature range 200 deg. C to 400 deg. C, ~10<sup>5</sup> parts-per billion (ppb), and the temperature range 400 deg. C to 500 deg. C, ~10<sup>2</sup> ppb. Our model does not fit well between temperatures of 150 deg. C to 200 deg. C. Our current model assumes a uniform composition of initial chemical reactants; likely an inhomogeneous composition would be a more accurate physical representation of a parent body. In addition, we match relative frequencies to observed frequencies for each amino acid in the CM2 subclass to well within an order of magnitude.</p> / Master of Science (MSc)

Page generated in 0.0962 seconds