• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Bootstrap in Supervised Learning and its Applications in Genomics/Proteomics

Vu, Thang 2011 May 1900 (has links)
The small-sample size issue is a prevalent problem in Genomics and Proteomics today. Bootstrap, a resampling method which aims at increasing the efficiency of data usage, is considered to be an effort to overcome the problem of limited sample size. This dissertation studies the application of bootstrap to two problems of supervised learning with small sample data: estimation of the misclassification error of Gaussian discriminant analysis, and the bagging ensemble classification method. Estimating the misclassification error of discriminant analysis is a classical problem in pattern recognition and has many important applications in biomedical research. Bootstrap error estimation has been shown empirically to be one of the best estimation methods in terms of root mean squared error. In the first part of this work, we conduct a detailed analytical study of bootstrap error estimation for the Linear Discriminant Analysis (LDA) classification rule under Gaussian populations. We derive the exact formulas of the first and the second moment of the zero bootstrap and the convex bootstrap estimators, as well as their cross moments with the resubstitution estimator and the true error. Based on these results, we obtain the exact formulas of the bias, the variance, and the root mean squared error of the deviation from the true error of these bootstrap estimators. This includes the moments of the popular .632 bootstrap estimator. Moreover, we obtain the optimal weight for unbiased and minimum-RMS convex bootstrap estimators. In the univariate case, all the expressions involve Gaussian distributions, whereas in the multivariate case, the results are written in terms of bivariate doubly non-central F distributions. In the second part of this work, we conduct an extensive empirical investigation of bagging, which is an application of bootstrap to ensemble classification. We investigate the performance of bagging in the classification of small-sample gene-expression data and protein-abundance mass spectrometry data, as well as the accuracy of small-sample error estimation with this ensemble classification rule. We observed that, under t-test and RELIEF filter-based feature selection, bagging generally does a good job of improving the performance of unstable, overtting classifiers, such as CART decision trees and neural networks, but that improvement was not sufficient to beat the performance of single stable, non-overtting classifiers, such as diagonal and plain linear discriminant analysis, or 3-nearest neighbors. Furthermore, the ensemble method did not improve the performance of these stable classifiers significantly. We give an explicit definition of the out-of-bag estimator that is intended to remove estimator bias, by formulating carefully how the error count is normalized, and investigate the performance of error estimation for bagging of common classification rules, including LDA, 3NN, and CART, applied on both synthetic and real patient data, corresponding to the use of common error estimators such as resubstitution, leave-one-out, cross-validation, basic bootstrap, bootstrap 632, bootstrap 632 plus, bolstering, semi-bolstering, in addition to the out-of-bag estimator. The results from the numerical experiments indicated that the performance of the out-of-bag estimator is very similar to that of leave-one-out; in particular, the out-of-bag estimator is slightly pessimistically biased. The performance of the other estimators is consistent with their performance with the corresponding single classifiers, as reported in other studies. The results of this work are expected to provide helpful guidance to practitioners who are interested in applying the bootstrap in supervised learning applications.
2

Venn Prediction for Survival Analysis : Experimenting with Survival Data and Venn Predictors

Aparicio Vázquez, Ignacio January 2020 (has links)
The goal of this work is to expand the knowledge on the field of Venn Prediction employed with Survival Data. Standard Venn Predictors have been used with Random Forests and binary classification tasks. However, they have not been utilised to predict events with Survival Data nor in combination with Random Survival Forests. With the help of a Data Transformation, the survival task is transformed into several binary classification tasks. One key aspect of Venn Prediction are the categories. The standard number of categories is two, one for each class to predict. In this work, the usage of ten categories is explored and the performance differences between two and ten categories are investigated. Seven data sets are evaluated, and their results presented with two and ten categories. For the Brier Score and Reliability Score metrics, two categories offered the best results, while Quality performed better employing ten categories. Occasionally, the models are too optimistic. Venn Predictors rectify this performance and produce well-calibrated probabilities. / Målet med detta arbete är att utöka kunskapen om området för Venn Prediction som används med överlevnadsdata. Standard Venn Predictors har använts med slumpmässiga skogar och binära klassificeringsuppgifter. De har emellertid inte använts för att förutsäga händelser med överlevnadsdata eller i kombination med Random Survival Forests. Med hjälp av en datatransformation omvandlas överlevnadsprediktion till flera binära klassificeringsproblem. En viktig aspekt av Venn Prediction är kategorierna. Standardantalet kategorier är två, en för varje klass. I detta arbete undersöks användningen av tio kategorier och resultatskillnaderna mellan två och tio kategorier undersöks. Sju datamängder används i en utvärdering där resultaten presenteras för två och tio kategorier. För prestandamåtten Brier Score och Reliability Score gav två kategorier de bästa resultaten, medan för Quality presterade tio kategorier bättre. Ibland är modellerna för optimistiska. Venn Predictors korrigerar denna prestanda och producerar välkalibrerade sannolikheter.
3

Regularization: Stagewise Regression and Bagging

Ehrlinger, John M. 31 March 2011 (has links)
No description available.

Page generated in 0.0168 seconds