1 |
Computing Bounds for Linear Functionals of Exact Weak Solutions to Poisson’s EquationSauer-Budge, A.M., Huerta, A., Bonet, J., Peraire, Jaime 01 1900 (has links)
We present a method for Poisson’s equation that computes guaranteed upper and lower bounds for the values of linear functional outputs of the exact weak solution of the infinite dimensional continuum problem using traditional finite element approximations. The guarantee holds uniformly for any level of refinement, not just in the asymptotic limit of refinement. Given a finite element solution and its output adjoint solution, the method can be used to provide a certificate of precision for the output with an asymptotic complexity which is linear in the number of elements in the finite element discretization. / Singapore-MIT Alliance (SMA)
|
2 |
Finite Element Output Bounds for a Stabilized Discretization of Incompressible Stokes FlowPeraire, Jaime, Budge, Alexander M. 01 1900 (has links)
We introduce a new method for computing a posteriori bounds on engineering outputs from finite element discretizations of the incompressible Stokes equations. The method results from recasting the output problem as a minimization statement without resorting to an error formulation. The minimization statement engenders a duality relationship which we solve approximately by Lagrangian relaxation. We demonstrate the method for a stabilized equal-order approximation of Stokes flow, a problem to which previous output bounding methods do not apply. The conceptual framework for the method is quite general and shows promise for application to stabilized nonlinear problems, such as Burger's equation and the incompressible Navier-Stokes equations, as well as potential for compressible flow problems. / Singapore-MIT Alliance (SMA)
|
3 |
Reduced-Basis Output Bound Methods for Parametrized Partial Differential EquationsPrud'homme, C., Rovas, D.V., Veroy, K., Machiels, L., Maday, Y., Patera, Anthony T., Turinici, G. 01 1900 (has links)
We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced-basis approximations -- Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation -- relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures -- methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage -- in which, given a new parameter value, we calculate the output of interest and associated error bound -- depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control. / Singapore-MIT Alliance (SMA)
|
4 |
Reliable Real-Time Solution of Parametrized Elliptic Partial Differential Equations: Application to ElasticityVeroy, K., Leurent, T., Prud'homme, C., Rovas, D.V., Patera, Anthony T. 01 1900 (has links)
The optimization, control, and characterization of engineering components or systems require fast, repeated, and accurate evaluation of a partial-differential-equation-induced input-output relationship. We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic partial differential equations with affine parameter dependence. The method has three components: (i) rapidly convergent reduced{basis approximations; (ii) a posteriori error estimation; and (iii) off-line/on-line computational procedures. These components -- integrated within a special network architecture -- render partial differential equation solutions truly "useful": essentially real{time as regards operation count; "blackbox" as regards reliability; and directly relevant as regards the (limited) input-output data required. / Singapore-MIT Alliance (SMA)
|
Page generated in 0.0332 seconds