11 |
Untersuchungen zum Einfluss der elektrischen Felder auf das Design von Kompakthöchstspannungsmasten aus ultrahochfestem Beton (UHPC) und zur Identifizierung der elektrischen und thermischen Parameter des UHPCsBakka, Maher 11 October 2018 (has links)
Freileitungsmaste aus herkömmlichen Beton werden bereits heute in großer Zahl in Mittelspan-nungsnetzen eingesetzt. Im Bereich der Hochspannungsfreileitungen existieren bisher international nur wenige erste Freileitungen mit Masten aus herkömmlichen Beton. Um zukünftig Elektroenergie über große Entfernungen über Trassen mit geringen Flächenbedarf transportieren zu können, sind neue Hochspannungsfreileitungen in kompakter Bauweise notwendig. Um dieses Ziel zu erfüllen, sollen die Kompaktmaste aus ultra-hochfestem Beton (UHPC) hergestellt werden. Dafür ist eine neue Sorte von UHPC mit hoher Festigkeitsklasse zu entwickeln.
Die mechanischen, elektrischen und thermischen Eigenschaften des neuen Betonmaterials waren zunächst unbekannt. Bisher gab es kaum Kenntnisse über die elektrischen und thermischen Belas-tungen, die auf die Betonmaste einer Freileitung in kompakter Bauweise einwirken.
Ein Teilthema im interdisziplinären Forschungsprojekt „KoHöMaT“ (gefördert durch das Bundesmi-nisterium für Wirtschaft und Energie) war es, gemeinsam mit Forschungsinstituten (IMB, Fichtner, Lapp, Europoles, KIT, iBMB) die Materialparameter des neuen UHPC zu bestimmen.
Den Einfluss der elektromagnetischen Belastungen auf die Lebensdauer und die Festigkeit des Ver-bundes aus Stahl und Beton habe ich untersucht. Aufgabe meiner Arbeit ist es auch, die elektrischen und thermischen Eigenschaften, wie die elektrische Leitfähigkeit, die elektrische Festigkeit, die Per-mittivität, den Verlustfaktor und die Wärmeleitfähigkeit experimentell zu bestimmen. Anhand der experimentellen Untersuchungen wurde der Versagensmechanismus des UHPC-Betons bei Span-nungsbelastung identifiziert. Die am Betonmast auftretenden elektrischen und thermischen Belas-tungen wurden mit Hilfe von verschiedenen FEM-Modellen berechnet und den gemessenen Fes-tigkeiten gegenübergestellt.
Es wurde der Einfluss permanenter elektrischer Felder auf die mechanischen Eigenschaften des UHPC bestimmt. Hierfür wurde die Druckfestigkeit des Betons vor und nach Dauerversuchen bei verschiedenen Spannungsbelastung gemessen. Der Verbund zwischen Stahl und Beton wurde in Lastwechselversuchen thermisch hoch beansprucht und dessen mechanische Festigkeit vor und nach der thermischen Belastung bei Auszugsversuchen gemessen.
Aufgrund der befürchtenden gesundheitlichen Risiken für Menschen und Tiere, sowie der gegen-seitigen Beeinflussung benachbarter elektronischer Systeme (EMV) dürfen die elektromagnetischen Felder von Freileitungen die jeweiligen maximal zulässigen Grenzwerte nicht überschreiten. Ich habe die Berechnungen der elektrischen und magnetischen Feldverteilung für die im Verbundvorhaben entwickelten Mastdesigns durchgeführt. Gemeinsam mit den Forschungsinstituten (Europoles, Fichtner, Lapp) wurden die Mastdesigns hinsichtlich der Feldverteilung optimiert. / The Overhead line towers made of conventional concrete are already used in large numbers in the medium voltage nowadays. So far, only a few towers of overhead transmission line made of con-ventional concrete which exists internationally in the area of high voltage. In order to be able to transmit electrical energy over long distances by routes of less floor space requirements, new high voltage overhead lines in compact construction are necessary. To achieve this goal, the compact towers have to be made of ultra-high-performance concrete (UHPC). Therefore, a new kind of UHPC with a high strength class has to be developed. For this kind of new concrete, the mechanical, electrical and thermal characteristics were unknown till now either, there was rare knowledge about the electric and thermal loads which have an effect on the concrete towers of an overhead line in compact construction method.
The main purpose part of this interdisciplinary research project 'KoHöMaT “, which funded by the Federal Ministry for Economic Affairs and Energy), was to identify the material parameters of the new UHPC together with the following research institutes (IMB, Fichtner, Lapp, Europoles, KIT, iBMB).
It was examined the influence of electromagnetic loads on the lifetime and its’ strength bond be-tween both of composite steel and concrete, also as my major involve was to determine the elec-trical and thermal properties experimentally, such as electrical conductivity, electrical strength, per-mittivity, dissipation factor and finally thermal conductivity.
As a result, the failure mechanism of the UHPC under the electrical stresses has been identified then,the electrical and thermal loads on the concrete towers were calculated by using various FEM models accordingly, the measured values were used in the determination of electrical strength. All mentioned theoretical calculated parameters were compared with the real measured parameters.
The influence of permanent electric fields on mechanical properties of the UHPC was determined as well. Mainly, the compressive strength of the concrete was measured before and after durability tests at different voltage loads. In addition, the composite (interface) between steel and concrete was thermal extremely loaded by alternating load tests. Its mechanical strength has been measured by pull-out tests before and after this thermal loads.
Due to the fear of health risks for both humans and animals, as well as the mutual influence of neighboring electronic systems (EMV), the electromagnetic fields of open lines must not exceed the respective maximum permissible limit values. The calculations of the electrical and magnetic field distribution were carried out for the mast design developed in the composite project. Together with the other research institute (Europoles, Fichtner, Lapp). the tower designs were optimized with re-gard to the field distribution.
|
12 |
Acoustic noise emitted from overhead line conductorsLi, Qi January 2013 (has links)
The developments of new types of conductors and increase of voltage level have driven the need to carry out research on evaluating overhead line acoustic noise. The surface potential gradient of a conductor is a critical design parameter for planning overhead lines, as it determines the level of corona loss (CL), radio interference (RI), and audible noise (AN). The majority of existing models for surface gradient calculation are based on analytical methods which restrict their application in simulating complex surface geometries. This thesis proposes a novel method which utilizes both analytical and numerical procedures to predict the surface gradient. Stranding shape, proximity of tower, protrusions and bundle arrangements are considered within this model. One of UK National Grid's transmission line configurations has been selected as an example to compare the results for different methods. The different stranding shapes are a key variable in determining dry surface fields. The dynamic behaviour of water droplets subject to AC electric fields is investigated by experiment and finite element modelling. The motion of a water droplet is considered on the surface of a metallic sphere. To understand the consequences of vibration, the FEA model is introduced to study the dynamics of a single droplet in terms of phase shift between vibration and exciting voltage. Moreover, the evolution of electric field within the whole cycle of vibration is investigated. The profile of the electric field and the characteristics of mechanical vibration are evaluated. Surprisingly the phase shift between these characteristics results in the maximum field occurring when the droplet is in a flattened profile rather than when it is ‘pointed’.Research work on audible noise emitted from overhead line conductors is reviewed, and a unique experimental set up employing a semi-anechoic chamber and corona cage is described. Acoustically, this facility isolates undesirable background noise and provides a free-field test space inside the anechoic chamber. Electrically, the corona cage simulates a 3 m section of 400 kV overhead line conductors by achieving the equivalent surface gradient. UV imaging, acoustic measurements and a partial discharge detection system are employed as instrumentation. The acoustic and electrical performance is demonstrated through a series of experiments. Results are discussed, and the mechanisms for acoustic noise are considered. A strategy for evaluating the noise emission level for overhead line conductors is developed. Comments are made on predicting acoustic noise from overhead lines. The technical achievements of this thesis are summarized in three aspects. First of all, an FEA model is developed to calculate the surface electric field for overhead line conductors and this has been demonstrated as an efficient tool for power utilities in computing surface electric field especially for dry condition. The second achievement is the droplet vibration study which describes the droplets' behaviour under rain conditions, such as the phase shift between the voltage and the vibration magnitude, the ejection phenomena and the electric field enhancement due to the shape change of droplets. The third contribution is the development of a standardized procedure in assessing noise emission level and the characteristics of noise emissions for various types of existing conductors in National Grid.
|
13 |
Analýza a návrh náhrady konkrétního venkovního vedení distribuční sítě / Analysis and design of the replacement of the specific overhead line in distribution networkRačuch, Marek January 2017 (has links)
The diploma thesis deals with the issue of the reconstruction of outdoor cables of low voltage distribution network in exchange for the cable line. It analyzes the important factors which are necessary for the preparation of the project documentation for the issue of the territorial consent. The thesis is divided into 4 main chapters. After the first chapter there is introduced chapter 2, which shows the differences between cable and outdoor cables with their advantages and disadvantages. Chapter 3 deals with the guiding principles for low-voltage cable design and the types of equipment needed for the proper operation of a particular distribution network while respecting the requirements of valid PNEs and ČSNs. Chapter 4 explains the chronology of the process leading to the formulation of a basic technical proposal, which is further addressed in Chapter 5, which deals with the complete formulation of the project documentation for the issue of territorial consent.
|
14 |
Návrh rekonstrukce distribuční sítě v zadané oblasti / Proposal of the reconstruction of a distribution network in a specific areaRichter, Miroslav January 2008 (has links)
The dissertation describes several types of low and high voltage distribution networks including their implementation in specified location with regards to the reliability and quality of electric power supply. The distributions networks are classified according to ways of cable routing, distribution line voltage levels as well as according to types of network interconnections. The high and low voltage distribution networks are further categorized based on used cable types, where, more attention is paid to insulated lines used in the Czech Republic, low voltage lines called „AES“ and „PAS“ high voltage lines used more and more during the distribution network reconstruction. Attention is also given to the description of used methodology for the calculation of network performance stability. An individual part of the dissertation is devoted to a low voltage distribution network proposal in the village of Kovalovice. Based on performed analysis of distribution network conditions, several reconstruction versions were proposed with the help of „KASI“ software, the description of which is also included. The proposed versions are further analysed for both, technical and economical aspects and is selected most suitable version of the distribution network.
|
15 |
Návrh rekonstrukce distribuční sítě v dané lokalitě / Proposal of the reconstruction of the distribution network in a specific areaNovák, Vojtěch January 2009 (has links)
This diploma thesis is concerned with reconstruction of distribution network in Hruba Vrbka. The diploma thesis is divided in two parts. For better understanding to this issue, the first theoretical part is shortly dedicated to the history of electrical power system, to the several types of distribution network of low voltage and high voltage and their utilization in the area, considering the reliability and the quality of delivery of the electric energy. In this thesis there is mentioned division of distribution grids according to placing of cable lines, according to voltage and according to type of grid connection. Next part of this work is dedicated to the description of overhead lines and cable lines and their characteristics. For the proper concept of the grid we should know some characteristics of the electric line’s proposal: mechanical strength, warming, voltage drop, efficiency, degree of safety and provision of delivery. In the end of the theoretical part there are described methods for calculation of grid’s steady state as a linear task and also non-linear task, elimination of the balancing node, the iterative method, the reduction of external power take-off nodes and the solution of the steady state of the network through the direct current model. The second part of the diploma thesis is concerned with the calculation of the steady state in the village Hruba Vrbka. In this part is also described the KASI program which was used for the calculation of the grid’s steady state. Firstly low voltage grid’s balance in Hruba Vrbka was found out and evaluated and then there were proposed some solutions of the reconstruction for the grid improving. The suggested options of the reconstruction are considered from technical and economical point of view and the best solution is chosen. For this solution there is suggested the protection through program SICHR 9. In the end of this diploma thesis there is checked the load of the high voltage line.
|
16 |
Studie över klimatförändringars påverkan på dynamisk ledningskapacitet / Study of the impact of climate change on dynamic line ratingHahne, Linnea January 2021 (has links)
The thesis aims to examine the impact of climate change on line rating and to investigate the possibility of a potential increase of capacity of an overhead line. The line rating of an overhead line determines how much current can be transmitted in the line. The weather parameters which affect the line rating are ambient temperature, solar radiation, wind speed, and wind direction. If the line rating is adapted to weather conditions, it is important to be able to predict how the weather will change in the future. Therefore, the impact of climate change on weather parameters is investigated. The ambient temperature and solar radiation are expected to change between different scenarios. However, it is unclear how wind speed and wind direction will be affected. Climate scenarios are designed that take these findings into account. The results show that wind speed has, by a large margin from other weather parameters, the largest impact on the dynamic line rating. This is followed by the wind's angle of attack to the conductor, ambient temperature, and finally solar radiation. For the designed climate scenarios, the dynamic line rating is almost the same in each case, which means that the calculated change in ambient temperature and solar radiation has no significant effect on the line rating. To further increase the capacity of the overhead line, the line could be upgraded with a conductor with a larger cross-sectional area.
|
Page generated in 0.0512 seconds