• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 21
  • 15
  • 10
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 103
  • 35
  • 19
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The system: calcium oxalate - sulphuric acid

Wilson, Joseph Maple. January 1927 (has links) (PDF)
Thesis (M.S.)--University of Missouri, School of Mines and Metallurgy, 1927. / The entire thesis text is included in file. Typescript. Title from title screen of thesis/dissertation PDF file (viewed February 23, 2010) Includes bibliographical references (p. 34).
22

A study of calcium oxalate dihydrate crystallization in synthetic and human urines

Thorson, Steven Thomas January 1979 (has links)
No description available.
23

EFFECT OF URINARY MACROMOLECULES ON CRYSTALLIZATION OF CALCIUM-OXALATE IN SYNTHETIC URINE SOLUTIONS

Kraljevich, Zlatica Idalia, 1949- January 1981 (has links)
The effect that organic urinary macromolecules have on the crystallization of calcium oxalate from a synthetic urine-like solution was studied in a mixed suspension-mixed product removal (MSMPR) continuous crystallizer. Precipitation of calcium oxalate crystals occurs during the continuous passage of urine through the renal system (kidney, bladder and tubules). While in normal circumstances these crystals remain small in size and exit the system unimpeded, in the pathologic condition calcium oxalate crystals are observed to aggregate and grow beyond a critical size where there is a significant probability of being trapped inside the renal system, e.g., on the kidney wall or in the tubules. Once trapped, the crystals become a nidus for further solute deposition and aggregation, giving origin to a renal calculus or stone. It is shown that this process is significantly affected by the presence or absence of organic macromolecules that act as modifiers of crystal growth, nucleation, and aggregation. An ultrafiltration technique was used to fractionate urine specimens from normal (N) and stone-forming (SF) persons into organic compounds of different molecular weight. These compounds were then added to the MSMPR system to test their effect on calcium oxalate crystallization. Significant differences were found to exist between N and SF urines in the composition, molecular weight distribution, and total quantity of these organic macromolecular compounds. The fraction of macromolecules responsible for the major effects on calcium oxalate crystallization was isolated, and its effect on crystal growth and nucleation rates was quantified. The steady state driving force (supersaturation) in the MSMPR system was measured. Striking differences in supersaturation versus residence time behavior between N and SF macromolecules were observed. The experimental conditions under which calcium oxalate crystals agglomerate were identified. Evidence which supports agglomeration as a key mechanism in urinary stone formation is presented.
24

The mechanisms of composite fouling in Australian sugar mill evaporators by calcium oxalate and amorphous silica

Yu, Hong, School of Chemical Engineering & Industrial Chemistry, UNSW January 2004 (has links)
Deposition of amorphous silica (SiO2) and calcium oxalate (CaOx) on the calandria tubes of juice evaporators cause serious processing problems in Australian cane sugar mills. The removal of these deposits by mechanical and chemical means is a timeconsuming and costly experience. The cost of downtime and chemical cleaning can be several million dollars per year for the Australian sugar industry. The interactions between CaOx and SiO2 have not been investigated previously because conventional studies only address fouling by individual components. The present work evaluates their interactions using two experimental approaches: batch tests for assessing kinetic and thermodynamic behaviour, and fouling-loop experiments for examining composite fouling behaviour under different operating conditions. The above two approaches were employed both in the absence and in the presence of sugar to elucidate the effect of sugar on composite fouling mechanisms and to determine the controlling species responsible for composite fouling. The composite fouling experiments were performed in a novel closed-loop circulation system simulating the effect of feed composition of successive stages of evaporation cycle in a single run. In addition, the fouling-loop system was operated in a constant composition mode to study the effects of thermal hydraulic conditions on composite fouling. The combined information obtained from both the batch and fouling-loop tests in this study offer a unique insight into the mechanisms of composite fouling of CaOx and SiO2. Some of the highlights of the obtained results are as follows: ??? Identification of a complex interactive process in calcium oxalate monohydrate ??? silica (COM-SiO2) systems by investigation of the kinetics and thermodynamics of COM-SiO2 coprecipitation in water and sugar solutions, and an understanding of the mechanisms of these interactions; ??? Development of a novel fouling-loop system, which is simple, efficient and cost effective for the study of the effect of juice composition on scale formation in various stages of juice evaporation; ??? Elucidation of composite fouling mechanisms, e.g., a feed composition dependent fouling mechanism is proposed; ??? Isolation and verification of the existence of certain species in composite deposits, which is known to be thermodynamically unstable. In other words, it is established that calcium oxalate trihydrate is stable under certain conditions; ??? Evaluation of the role of thermal hydraulic operating parameters in determining the characteristics of subcooled flow boiling heat transfer and in determining the strength of the composite deposit; ??? Development and validation of an empirical model to predict the subcooled flow boiling heat transfer coefficients in water and sugar solutions; ??? Development of an analytical model incorporating the effects of operating parameters for COM and SiO2 composite fouling in sugar solutions. This model predicted the experimental data better than available models. Results of this work are significant, not only because they have made a valuable contribution to advance the fundamental understanding of heat exchanger fouling, but also because they may play a key role in the development of scale control and removal strategies to minimize the composite fouling in Australian sugar mill evaporators. For example it was found that, in order to effectively minimize the rate of composite fouling and reduce the scale tenacity, it would be necessary to control thermal hydraulic operating conditions, especially the fluid velocity, and to adjust the initial CaOx/SiO2 supersaturation ratio to the optimum value. To achieve the optimal CaOx/SiO2 ratio, certain device can be developed to sequentially measure oxalic acid and SiO2 concentrations in juice so that the correct proportions of chemicals can be added. Model simulations of the composite fouling rate may also effectively and economically provide comparative and relevant information essential for process optimisation and evaporator design
25

Renal proximal tubular glycosaminoglycans-isolation, characterization and involvement in calcium oxalate crystallization /

Liong, Emily C. January 1996 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1996. / Includes bibliographical references (leaf 180-212).
26

Oxalate in human physiology and pathophysiology investigations and therapeutic management of the various hyperoxalemic states /

Prenen, Johan Adrianus Cornelis, January 1983 (has links)
Thesis (doctoral)--Utrecht, 1983.
27

Avaliação in vitro dos efeitos da aplicação de sistemas adesivos, do oxalato de potássio, ou a combinação de ambos, na permeabilidade dentinária / Effects of a potassium oxalate gel/adhesive agent combined application on dentin permeability: an in vitro study

Silva, Safira Marques de Andrade e 17 June 2005 (has links)
A tendência atual de simplificação de sistemas adesivos transformou-os em polímeros altamente hidrofílicos e prontamente susceptíveis à permeação de água através de sua estrutura. Estudos recentes têm demonstrado que os sistemas adesivos simplificados se comportam como membranas semipermeáveis, permitindo o movimento de fluidos através da sua estrutura. Soluções a base de oxalato de potássio são efetivos agentes de redução da condutividade hidráulica dentinária. Quando são aplicados na dentina após o condicionamento ácido, podem ser utilizados em associação com os sistemas adesivos sem o comprometimento da adesão. Este trabalho objetivou avaliar os efeitos dos sistemas adesivos AdheSE, One Up Bond F e Single Bond, associados ou não a uma solução a base de oxalato de potássio, na condutividade hidráulica da dentina. Foram realizados preparos de coroas totais em terceiros molares humanos que tiveram suas raízes secionadas e a polpa coronária removida. Os segmentos coronários obtidos foram conectados ao ?Medidor de Fluxo? (Flodec?System, De marco Engineering, Switzerland). A condutividade hidráulica dos espécimes foi mensurada antes e após a aplicação dos sistemas adesivos Single Bond -3M ESPE, One UP Bond F -Tokuyama Inc, AdheSe- Ivoclar- Vivadent. Os adesivos foram aplicados seguindo as recomendações do fabricante (grupos SBF, ADF e OBF), de forma experimental (grupos ADE e OBE), e em combinação com uma solução a base de oxalato de potássio (grupos SBO, ADO e OBO). Cada espécime teve seu valor de permeabilidade original ( smear layer) e máxima (após condicionamento ácido) medidos anteriormente, os quais serviram como parâmetros para o cálculo das respectivas alterações frente aos tratamentos, expressas em porcentagem. Após a determinação da condutividade hidráulica, os preparos foram moldados para obtenção de réplicas em resina, as quais foram examinadas em MEV (JEOL 2800, Japão) para qualificar a permeação de fluido através do adesivo. A Análise de variância a 2 critérios mostrou que apesar dos procedimentos adesivos causarem uma redução significante (p< 0.05) na condutividade hidráulica da dentina condicionada, nenhum foi capaz de eliminar completamente a passagem de fluidos através do adesivo polimerizado. Para os três adesivos testados, o tratamento com o oxalato de potássio foi o tratamento mais eficaz na redução da permeabilidade dentinária e esta diferença foi estatisticamente significante quando comparada aos outros tratamentos (p<0,05). Não houve diferença entre os três sistemas adesivos estudados com relação à redução da permeabilidade dentinária (p> 0,05). A análise das réplicas em MEV mostrou que mesmo após a polimerização do adesivo, a transudação de fluidos pôde ser identificada na superfície de todas réplicas examinadas. Nenhum dos sistemas adesivos testados foi capaz de eliminar a permeação de fluidos através da dentina, contudo a associação destes adesivos com uma solução a base de oxalato de potássio reduziu de forma significante a permeabilidade dentinária. / There is an ongoing trend to move away from classical multi-component bonding systems toward simplified adhesives. An immediate consequence of adhesive simplification is the intrinsic permeability to water that result from their increase in hydrophilicity. Current studies have demonstrated that single-step adhesives may act as semi-permeable membranes that allow water diffusion through its structure. Oxalate desensitizers are effective in reducing the hydraulic conductance of dentin. When oxalates are used after acid- etching they do not interfere with subsequent resin bonding. The objective of this study was to test the effects of adhesives systems with or without the application of an oxalate desensitizer on dentin permeability. Crown preparations were made from human extracted teeth. After the roots were sectioned and the coronal pulp removed, the crown segments were connected to an automatic flow-recording device (Flodec-System, De Marco Engineering, Switzerland). Fluid conductance was measured before and after the bonding procedures with the adhesives Single Bond -3M ESPE, One UP Bond F -Tokuyama Inc and AdheSe- Ivoclar Vivadent. Specimens were prepared and tested after the surface had been bonded according to manufacturer?s instructions (SBF,ADF and OBF groups) , in a experimental way (ADE and OBE groups) or integrating with a oxalate desensitizer gel (SBO, ADO and OBO groups). For each specimen, fluid flow across the smear-layer and bonded dentin was expressed as a percentage of acidetched dentin, which was assigned a value of 100% flow rate. After the hydraulic conductance measures, impressions were taken from the crown segments and epoxy resin replicas were produced for SEM examination. Two-Way ANOVA reveled that the adhesive systems reduced dentin permeability significantly (p< 0.05) compared to acid etched dentin, but no bonding system was able to eliminate the fluid flow though dentin. For the three bonding systems tested, treating the acid-etched dentin with potassium oxalate prior to the application of the adhesive was the most effective in reducing the hydraulic conductance of the specimens, and this difference was significant (p< 0.05) when comparing to the other treatments. There were no significant differences among the adhesives in their ability to reduce dentin permeability (p> 0.05). SEM micrographs of resin replicas showed that transudation of dentinal fluid droplets could be identified on the surfaces of all replicas examined.
28

Engineering Allium White Rot Disease Resistance in Allium Species and Tobacco Model Species

Glue, Joshua Barnaby January 2009 (has links)
Allium white rot (AWR) is a soilborne disease that seriously damages commercial cultivation of onion (Allium cepa) and garlic (Allium sativum) crops. The disease has been found everywhere onions are cultivated and at present no system of control has been found that fully prevents the occurrence of the disease. The fungus responsible for the disease, Sclerotium cepivorum, uses oxalic acid to kill Allium bulb and root tissue in growing onion and garlic plants. Research suggests recombinant oxalate oxidase and oxalate decarboxylase enzymes may be able to degrade this acid and confer resistance against pathogens that rely on it, such as Sm. cepivorum or Sclerotinia sclerotiorum. To test the efficacy of these enzymes against white rot pathogens, three transgenes for wheat oxalate oxidase, barley oxalate oxidase and Flammulina oxalate decarboxylase were transformed into onions and garlic by Agrobacterium-mediated transformation. Allium species are highly recalcitrant to transformation, so these three transgenes were also transformed into tobacco to provide fast-recovering, easy to test transformants to assess the efficacy of the transgenes. Transformed garlic and tobacco lines were analysed to assess the integration and expression of the transgenes, then challenged with Sm. cepivorum or Sa. sclerotiorum, respectively, to assess the bioactivity of recombinant wheat oxalate oxidase, barley oxalate oxidase, and Flammulina oxalate decarboxylase against oxalic acid-dependent pathogens. Results show that one line of tobacco expressing the Flammulina oxalate decarboxylase enzyme was found to be consistently resistant to Sclerotinia sclerotiorum. Garlic lines transformed with this transgene failed to display stable transgene expression or disease resistance, possibly due to silencing of the transgene in recovered transformant tissue.
29

Engineering Allium White Rot Disease Resistance in Allium Species and Tobacco Model Species

Glue, Joshua Barnaby January 2009 (has links)
Allium white rot (AWR) is a soilborne disease that seriously damages commercial cultivation of onion (Allium cepa) and garlic (Allium sativum) crops. The disease has been found everywhere onions are cultivated and at present no system of control has been found that fully prevents the occurrence of the disease. The fungus responsible for the disease, Sclerotium cepivorum, uses oxalic acid to kill Allium bulb and root tissue in growing onion and garlic plants. Research suggests recombinant oxalate oxidase and oxalate decarboxylase enzymes may be able to degrade this acid and confer resistance against pathogens that rely on it, such as Sm. cepivorum or Sclerotinia sclerotiorum. To test the efficacy of these enzymes against white rot pathogens, three transgenes for wheat oxalate oxidase, barley oxalate oxidase and Flammulina oxalate decarboxylase were transformed into onions and garlic by Agrobacterium-mediated transformation. Allium species are highly recalcitrant to transformation, so these three transgenes were also transformed into tobacco to provide fast-recovering, easy to test transformants to assess the efficacy of the transgenes. Transformed garlic and tobacco lines were analysed to assess the integration and expression of the transgenes, then challenged with Sm. cepivorum or Sa. sclerotiorum, respectively, to assess the bioactivity of recombinant wheat oxalate oxidase, barley oxalate oxidase, and Flammulina oxalate decarboxylase against oxalic acid-dependent pathogens. Results show that one line of tobacco expressing the Flammulina oxalate decarboxylase enzyme was found to be consistently resistant to Sclerotinia sclerotiorum. Garlic lines transformed with this transgene failed to display stable transgene expression or disease resistance, possibly due to silencing of the transgene in recovered transformant tissue.
30

Gas phase ion and radical chemistry of CO2 adducts with possible relevance in the atmosphere of Mars

Soldi-Lose, Héloïse January 2008 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2008

Page generated in 0.0507 seconds