• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural studies of germin-like proteins

Woo, Eui-Jeon January 1999 (has links)
No description available.
2

Engineering Allium White Rot Disease Resistance in Allium Species and Tobacco Model Species

Glue, Joshua Barnaby January 2009 (has links)
Allium white rot (AWR) is a soilborne disease that seriously damages commercial cultivation of onion (Allium cepa) and garlic (Allium sativum) crops. The disease has been found everywhere onions are cultivated and at present no system of control has been found that fully prevents the occurrence of the disease. The fungus responsible for the disease, Sclerotium cepivorum, uses oxalic acid to kill Allium bulb and root tissue in growing onion and garlic plants. Research suggests recombinant oxalate oxidase and oxalate decarboxylase enzymes may be able to degrade this acid and confer resistance against pathogens that rely on it, such as Sm. cepivorum or Sclerotinia sclerotiorum. To test the efficacy of these enzymes against white rot pathogens, three transgenes for wheat oxalate oxidase, barley oxalate oxidase and Flammulina oxalate decarboxylase were transformed into onions and garlic by Agrobacterium-mediated transformation. Allium species are highly recalcitrant to transformation, so these three transgenes were also transformed into tobacco to provide fast-recovering, easy to test transformants to assess the efficacy of the transgenes. Transformed garlic and tobacco lines were analysed to assess the integration and expression of the transgenes, then challenged with Sm. cepivorum or Sa. sclerotiorum, respectively, to assess the bioactivity of recombinant wheat oxalate oxidase, barley oxalate oxidase, and Flammulina oxalate decarboxylase against oxalic acid-dependent pathogens. Results show that one line of tobacco expressing the Flammulina oxalate decarboxylase enzyme was found to be consistently resistant to Sclerotinia sclerotiorum. Garlic lines transformed with this transgene failed to display stable transgene expression or disease resistance, possibly due to silencing of the transgene in recovered transformant tissue.
3

Engineering Allium White Rot Disease Resistance in Allium Species and Tobacco Model Species

Glue, Joshua Barnaby January 2009 (has links)
Allium white rot (AWR) is a soilborne disease that seriously damages commercial cultivation of onion (Allium cepa) and garlic (Allium sativum) crops. The disease has been found everywhere onions are cultivated and at present no system of control has been found that fully prevents the occurrence of the disease. The fungus responsible for the disease, Sclerotium cepivorum, uses oxalic acid to kill Allium bulb and root tissue in growing onion and garlic plants. Research suggests recombinant oxalate oxidase and oxalate decarboxylase enzymes may be able to degrade this acid and confer resistance against pathogens that rely on it, such as Sm. cepivorum or Sclerotinia sclerotiorum. To test the efficacy of these enzymes against white rot pathogens, three transgenes for wheat oxalate oxidase, barley oxalate oxidase and Flammulina oxalate decarboxylase were transformed into onions and garlic by Agrobacterium-mediated transformation. Allium species are highly recalcitrant to transformation, so these three transgenes were also transformed into tobacco to provide fast-recovering, easy to test transformants to assess the efficacy of the transgenes. Transformed garlic and tobacco lines were analysed to assess the integration and expression of the transgenes, then challenged with Sm. cepivorum or Sa. sclerotiorum, respectively, to assess the bioactivity of recombinant wheat oxalate oxidase, barley oxalate oxidase, and Flammulina oxalate decarboxylase against oxalic acid-dependent pathogens. Results show that one line of tobacco expressing the Flammulina oxalate decarboxylase enzyme was found to be consistently resistant to Sclerotinia sclerotiorum. Garlic lines transformed with this transgene failed to display stable transgene expression or disease resistance, possibly due to silencing of the transgene in recovered transformant tissue.
4

Characterization of Transgenic Peanuts Expressing Oxalate Oxidase for Governmental Approval of Their Release for Control of Sclerotinia Blight

Chriscoe, Shanna Marie 28 July 2009 (has links)
<i>Sclerotinia minor</i> Jagger is a fungal pathogen of cultivated peanut (<i>Arachis hypogaea</i> L.) that can cause crop losses in excess of 50%. Fungicides are not completely effective at controlling the disease and can cost up to $311 per hectare for three applications. The ability to produce oxalic acid is necessary for the pathogenicity of some <i>Sclerotinia</i> spp. With little to no naturally occurring resistance to Sclerotinia blight in <i>Arachis</i> spp., a biotechnological approach was used to confer resistance to the disease. Peanut plants were transformed with a gene from barley encoding oxalate oxidase, an enzyme that degrades oxalic acid. Transformed peanuts showed resistance to S. minor and increased yields under disease pressure compared to the parental lines. Before the resistant varieties can be marketed, they must be reviewed and approved by the governmental regulatory system. Responsibility for regulation of transgenic plants in the U.S. is shared among the U.S. Department of Agriculture (USDA) through the Animal and Plant Health Inspection Service (APHIS), the Food and Drug Administration (FDA), and the Environmental Protection Agency (EPA). These agencies require several different data sets including molecular characterization and field studies before each transformation event can be commercialized. This project was designed to characterize three different transformation events, N70, P39 and W171. Molecular characterization included determination of insertion number, copy number, intactness of the expression cassette and stable inheritance of the transgene. N70 was found to have two insertions and two copies while W171 had one insertion with one copy. The P39 event has two insertions and two or more copies. Each of the three events was stable over multiple generations. Phenotypic comparisons of each transgenic line to the parent cultivar were carried out in field studies. Characteristics such as oxalate oxidase expression, yield and quality, hay quality, disease occurrence, aflatoxin content and plant height were assessed. Transgenic peanuts showed few differences from the parent cultivar other than resistance to Sclerotinia blight and yield under disease pressure. Outcrossing studies were completed to determine the rate and distance of cross pollination. Outcrossing rates in N70, P39 and W171 were less than 2.5% and occurred up to 19 rows or 17.4 m from the nearest transgenic row. The molecular characterization and field performance of N70, P39 and W171 have been assembled into a document to petition APHIS for determination of non-regulated status. / Master of Science in Life Sciences

Page generated in 0.0392 seconds