• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of various factors on the rate of reduction of zinc ferrite, calamine, and willemite by carbon

Nix, Foster Cary. January 1925 (has links) (PDF)
Thesis (M.S.)--University of Missouri, School of Mines and Metallurgy, 1925. / The entire thesis text is included in file. Typescript. Illustrated by author. Title from title screen of thesis/dissertation PDF file (viewed Oct. 9, 2009). Includes bibliographical references.
2

A study of the reduction of zinc oxide by hydrogen and methane

Weirich, Frederick Adam. January 1926 (has links) (PDF)
Thesis (M.S.)--University of Missouri, School of Mines and Metallurgy, 1926. / The entire thesis text is included in file. Typescript. Illustrated by author. Title from title screen of thesis/dissertation PDF file (viewed Sept. 16, 2009). Includes bibliographical references (p. 20-21).
3

Coupled Abiotic and Biotic Cycling of Nitrous Oxide

January 2020 (has links)
abstract: Nitrous oxide (N2O) is an important greenhouse gas and an oxidant respired by a diverse range of anaerobic microbes, but its sources and sinks are poorly understood. The overarching goal of my dissertation is to explore abiotic N2O formation and microbial N2O consumption across reducing environments of the early and modern Earth. By combining experiments as well as diffusion and atmospheric modeling, I present evidence that N2O production can be catalyzed on iron mineral surfaces that may have been present in shallow waters of the Archean ocean. Using photochemical models, I showed that tropospheric N2O concentrations close to modern ones (ppb range) were possible before O2 accumulated. In peatlands of the Amazon basin (modern Earth), unexpected abiotic activity became apparent under anoxic conditions. However, care has to be taken to adequately disentangle abiotic from biotic reactions. I identified significant sterilant-induced changes in Fe2+ and dissolved organic matter pools (determined by fluorescence spectroscopy). Among all chemical and physical sterilants tested, γ - irradiation showed the least effect on reactant pools. Targeting geochemically diverse peatlands across Central and South America, I present evidence that coupled abiotic and biotic cycling of N2O could be a widespread phenomenon. Using isotopic tracers in the field, I showed that abiotic N2O fluxes rival biotic ones under in-situ conditions. Moreover, once N2O is produced, it is rapidly consumed by N2O-reducing microbes. Using amplicon sequencing and metagenomics, I demonstrated that this surprising N2O sink potential is associated with diverse bacteria, including the recently discovered clade II that is present in high proportions at Amazonian sites based on nosZ quantities. Finally, to evaluate the impact of nitrogen oxides on methane production in peatlands, I characterized soil nitrite (NO2–) and N2O abundances along soil profiles. I complemented field analyses with molecular work by deploying amplicon-based 16S rRNA and mcrA sequencing. The diversity and activity of soil methanogens was affected by the presence of NO2– and N2O, suggesting that methane emissions could be influenced by N2O cycling dynamics. Overall, my work proposes a key role for N2O in Earth systems across time and a central position in tropical microbial ecosystems. / Dissertation/Thesis / Doctoral Dissertation Microbiology 2020
4

Nitrogen dioxide reduction with methane over palladium-based sulfated zirconia catalysts: a componant of a lean exhaust aftertreatement system

Holmgreen, Erik M. 14 September 2006 (has links)
No description available.
5

Reduction of Solid Uranium Dioxide in Calcium Salts

Karakaya, Nagihan 01 July 2022 (has links)
Nuclear energy has gained crucial importance since it has a minor impact on climate change and greenhouse gas releases; additionally, the other energy sources are insufficient to reach the world's energy needs without nuclear energy. Another sign that the Generation IV International Forum (Kelly, Gen IV International Forum: A decade of progress through international cooperation, 2014) has pointed out is to utilize uranium resources to the maximum and recycle spent nuclear fuel through burn-up in the Generation IV reactor designs, one of which is the molten salt reactor (MSR). Therefore, the MSR can use the spent nuclear fuel as a fresh fuel when the actinides recycle. That reprocessing of spent fuel could be one of the opportunities to contribute to future nuclear energy goals. This study aims to develop a modified pyroprocessing method to prepare molten salt fuels for MSR from spent oxide nuclear fuel that was burned in light water reactors (LWRs). The process diagram illustrated as (1) spent fuel treatment, (2) chopping and voloxidation of spent oxide fuel, (3) oxide reduction of spent fuel, and then depending on the fuel structure and composition for the MSR, it continues by one or two of the following; – electrorefining, – chlorination, and – fluorination. The subject of this study focused on oxide reduction in two categories: chemical reduction and electrochemical reduction. The system designs have been optimized in calcium salts since they have high calcium metal and calcium oxide solubility. The significant results indicated that both methods would substantially reduce the solid uranium dioxide pellet. The chemical reduction will reduce the total solid pellet at 850oC in the composition of 55.73mol%CaCl2-12.37mol%CaF2-26.58mol%Ca-5.32mol%UO2 over 12 hours. The total reduction in the electrochemical test is seen at 850oC during 12 hours with a salt composition of 79mol%CaCl2-17mol%CaF2-4mol%CaO. These oxide reduction mechanisms are convenient ways to reprocess spent oxide fuel from LWRs to utilize in the MSR. Additionally, the reduced fuel is also applicable to using other next-generation reactors. The prospect of this research is the explicit comparison between chemical and electrochemical methods in calcium salts. / M.S. / Nuclear energy is a crucial energy production to meet the world’s future energy needs. The 6 (six) next-generation reactor design has been determined based on their sustainability, economic, and peaceful application for the world. One of those designs is molten salt reactors (MSRs) which have more attention due to their fuel choice. Most MSRs use the reprocessed fuel from current reactors or the fuel with the breeder blanket that creates more fuel while the reactor operates. This study aims to provide a diagram showing the various steps involved in the preparation of molten salt fuel from spent oxide fuel, which is a mainly utilized form of fuel in current and previous operations. The flowsheet’s first step is the treatment of spent fuel that releases most of the decay heat. The second step is that spent fuel chopping and voloxidation, which meets the requirements of removing gas products and cladding material from used fuel. Afterward, the spent oxide fuel reduces into its metal form chemically or electrochemically in oxide reduction. Then, the molten salt fuel could be fabricated in n one or two more steps from reduced metals: electrorefining, chlorination, or fluorination. Chlorination and fluorination pass through the specific gas components to convert the metal forms into salt. Electrorefining could be applied to arrange the composition of the reduced metal, and this stage is strongly dependent on the MSR designs; it may get eliminated due to its unnecessity. The oxide mechanisms mentioned above were examined under different design conditions to acquire a total reduction of the fuel pellet in calcium salts. The chemical reduction and electroreduction experiments have shown the reduced whole pellet at 850oC with two different salt mixtures. The design impacts of the reduction mechanism were discussed extensively between chemical and electrochemical reductions to identify the benefits and limitations.
6

Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure

Williams, Christopher Bryant 15 January 2008 (has links)
Low-density cellular materials, metallic bodies with gaseous voids, are a unique class of materials that are characterized by their high strength, low mass, good energy absorption characteristics, and good thermal and acoustic insulation properties. In an effort to take advantage of this entire suite of positive mechanical traits, designers are tailoring the cellular mesostructure for multiple design objectives. Unfortunately, existing cellular material manufacturing technologies limit the design space as they are limited to certain part mesostructure, material type, and macrostructure. The opportunity that exists to improve the design of existing products, and the ability to reap the benefits of cellular materials in new applications is the driving force behind this research. As such, the primary research goal of this work is to design, embody, and analyze a manufacturing process that provides a designer the ability to specify the material type, material composition, void morphology, and mesostructure topology for any conceivable part geometry. The accomplishment of this goal is achieved in three phases of research: Design Following a systematic design process and a rigorous selection exercise, a layer-based additive manufacturing process is designed that is capable of meeting the unique requirements of fabricating cellular material geometry. Specifically, metal parts of designed mesostructure are fabricated via three-dimensional printing of metal oxide ceramic powder followed by post-processing in a reducing atmosphere. Embodiment The primary research hypothesis is verified through the use of the designed manufacturing process chain to successfully realize metal parts of designed mesostructure. Modeling & Evaluation The designed manufacturing process is modeled in this final research phase so as to increase understanding of experimental results and to establish a foundation for future analytical modeling research. In addition to an analysis of the physics of primitive creation and an investigation of failure modes during the layered fabrication of thin trusses, build time and cost models are presented in order to verify claims of the process s economic benefits. The main contribution of this research is the embodiment of a novel manner for realizing metal parts of designed mesostructure.
7

Simultaneous Removal of Elemental Mercury and NO over Modified SCR Catalyst in Coal Combustion Flue Gas

Li, Can January 2020 (has links)
No description available.
8

In-situ Reduction by Incorporating H2 Filled Hollow Glass Microspheres in PM HIP Capsules

Strand, Emil January 2018 (has links)
For many metal components the presence of hard, non-metallic inclusions such as oxides lowers the impact toughness by acting as fracture initiation points and easing crack propagation. In components produced by powder metallurgy hot isostatic pressing (PM HIP), oxides often form a continuous network of small, spherical inclusions after consolidation at the prior particle boundaries (PPB). It is therefore of great importance to reduce surface oxides before consolidation in order to improve mechanical properties. In this work, oxides were attempted to be reduced directly prior to the consolidation of one tool steel and one low-alloy steel by introducing H2 into sealed PM HIP capsules. The two H2-carriers were hollow glass microspheres and the compound ammonia borane (H3NBH3). The H2-carriers were placed separately from the metal powder. Microspheres were filled at 300 °C with a gas mixture at 675 bar resulting in a storage capacity of 0.16 wt%. Gaseous species released from the H2-carriers during heating were analysed by mass spectrometry. Results showed that the microspheres only release H2 while ammonia borane in addition releases other nitrogen and boron containing species. Impact testing as well as chemical and microstructural analysis were performed on the two consolidated materials with samples retrieved from different vertical and radial positions. Both H2-carriers had leaked into the material resulting in decreased impact toughness compared to the reference. Further from the source of the contaminants, oxygen content was reduced and impact toughness was improved. Microspheres showed overall better reduction ability even though they release less hydrogen compared to ammonia borane. Impact toughness was not improved as much with ammonia borane even though similar oxygen levels were achieved. Ammonia borane’s decomposition products likely obstruct the oxide reduction or introduce new inclusions lowering the impact toughness. / Det är för många metallkomponenter viktigt att så mycket som möjligt undvika hårda, icke metalliska inneslutningar. Detta eftersom de sänker slagsegheten genom sprickinitiering men även genom att underlätta spricktillväxt. Ytoxider i komponenter tillverkade genom pulvermetallurgisk het-isostatisk pressning (PM HIP) bildar ofta ett kontinuerligt nätverk av små, sfäriska inneslutningar efter konsolidering vid de tidigare partikelgränserna. Det är därför viktigt att reducera ytoxider före konsolidering för att förbättra de mekaniska egenskaperna av komponenter tillverkade genom PM HIP. I detta examensarbete har ytoxider reduceras direkt före konsolidering av ett låglegerat stål och ett verktygsstål genom att tillsätta H2 i de förseglade PM HIP kapslarna. Två vätgasbärare testades, ihåliga mikrosfärer av glas och ammoniak boran (H3NBH3). Vätgasbärarna var placerade i ett område avskilt från metallpulvret. Mikrosfärerna fylldes med en gasblandning vid 675 bar och 300 °C vilket resulterade i en lagringskapacitet på 0.16 vikt%. Gaser som frigjordes från vätgasbärarna vid uppvärmning analyserades med en masspektrometer. Resultatet visade att mikrosfärerna bara frigör H2 medan ammoniak boran också frigör andra ämnen innehållande kväve och bor. Slagprovning och analys av mikrostruktur samt syre- och kvävehalter utfördes på de två konsoliderade materialen med prover från olika vertikala och radiella positioner. Båda vätgasbärarna hade läckt in i materialet vilket resulterade i minskad slagseghet jämfört med referensmaterialet. Längre från vätgasbärarnas ursprungsposition var slagsegheten bättre och syrehalten lägre. De vätgasfyllda mikrosfärerna uppvisade överlag bättre förmåga att minska syrehalten trots att de innehöll mindre H2 jämfört med ammoniak boran. Slagsegheten förbättrades inte lika mycket med ammoniak boran trots att liknade syrenivåer uppmättes. Ammoniak boranets pyrolysprodukter förhindrar möjligtvis oxidreduktionen eller introducerar nya inneslutningar som resulterar i en försämrad slagseghet.
9

Étude expérimentale de la production de fer électrolytique en milieu alcalin : mécanisme de réduction des oxydes et développement d'une cellule / Experimental study of the iron metal production by electrolysis in alkaline solution : iron oxide reduction mechanism and electrochemical cell development

Allanore, Antoine 20 December 2007 (has links)
Le fer est l'un des rares métaux qui ne soit pas produit industriellement par électrolyse. Pour aider au développement d'un tel procédé pour l'acier, l'électrolyse des oxydes de fer en milieu sodique est examinée, selon deux approches. La première démarche consiste en l'étude expérimentale du mécanisme réactionnel. L'électrochimie des ions indique qu'il est possible de produire du métal par électrodéposition en milieu alcalin. Parallèlement, l'étude de la réduction d'une particule d'oxyde hématite révèle qu'elle subit, lors de sa conversion en fer métallique, une transformation macroscopique en phase solide. Les analyses démontrent la formation de magnétite comme intermédiaire réactionnel. La seconde démarche est dédiée à la production du fer métallique, par électrolyse d'une suspension de particules d'oxyde dans diverses configurations de cellules. L'incidence des paramètres de procédé a été établie et permet de proposer des éléments de conception d'une cellule industrielle / Iron is one of the few metals which is not industrially produced by electrolysis. The electrowinning of iron metal from its oxides in alkaline solution has been studied to develop such an ironmaking route. Two approaches have been adopted. The first one concerns the evaluation of the reaction mechanism. The study of iron ions electrochemistry in alkaline media shows that the electrodeposition of iron metal is possible. The study of a single iron oxide particle reduction reveals that a reaction of the hematite solid phase is possible. The analysis of a partially converted particle proves that magnetite is formed as an intermediate. The second field of study is dedicated to the production of iron metal in various electrochemical cells, using a suspension electrolysis process. The influence of the key operating parameters is established to assess the possible scale-up. All these elements are gathered to propose the main features of an industrial cell dedicated to the reaction
10

ALD-grown seed layers for electrochemical copper deposition integrated with different diffusion barrier systems

Waechtler, Thomas, Ding, Shao-Feng, Hofmann, Lutz, Mothes, Robert, Xie, Qi, Oswald, Steffen, Detavernier, Christophe, Schulz, Stefan E., Qu, Xin-Ping, Lang, Heinrich, Gessner, Thomas January 2011 (has links)
The deposition of Cu seed layers for electrochemical Cu deposition (ECD) via atomic layer deposition (ALD) of copper oxide and subsequent thermal reduction at temperatures between 110 and 120°C was studied on different diffusion barrier systems. While optimization of the process is required on TaN with respect to reduction and plating, promising results were obtained on blanket PVD Ru. The plating results on layers of ALD Cu with underlying Ru even outperformed the ones achieved on PVD Cu seed layers with respect to morphology and resistivity. Applying the processes to via and line patterns gave similar results, suggesting that a combination of ALD Cu with PVD or ALD-grown Ru could significantly improve the ECD Cu growth.

Page generated in 0.0861 seconds