• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 10
  • 9
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 98
  • 36
  • 29
  • 23
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Detection and Characterization of a Unique Ammonia Oxidizing Archaea; Cultured from Lake Superior

Schlais, Michael J. 01 December 2014 (has links)
No description available.
32

Catalytic Effect of Iron Oxidizing Bacteria on the Production of Pigment from Acid Mine Drainage

Murphy, Julianna E. 19 September 2017 (has links)
No description available.
33

Microbial Assessment of a Bioremediation System Treating Acid Mine Drainage

Krinks, John K. 24 August 2007 (has links)
No description available.
34

Polyunsaturated fatty acids, lipid accumulation, and oxidant stress in cells in culture /

Gavino, Victor Cruz January 1981 (has links)
No description available.
35

Oxidation addition of H-H bonds to iridium: developing novel active water soluble catalysts for hydrogenation of unsaturates

Le, Trang X. 23 September 2008 (has links)
The oxidative addition of H-H to iridium(l) trimethylphosphine complexes was studied and the reactivity of the resulting water soluble dihydrido iridium (III) complexes was investigated. One Dihydrido iridium(III) complex, mer-Ir(H)₂(PMe₃)₃CI <b>(2)</b> was characterized by ¹H, ³¹p and ¹³C NMR spectroscopy, CH analysis and single crystal xray diffraction. <b>(2)</b> reacted with the strong sigma donor PMe₃ to form [IrH2(PMe₃)4]CI <b>(3b)</b> without having to remove the chloride ligand. <b>(2)</b> reacted with monosubstituted acetylenes and an internal diyne in water to form the vinyl complexes Ir(H)(C(R')=C(H)-(R))(PMe₃)₃CI (R = CMe₃, C₆H₅, SiMe₃, R' = H, <b>(4)-(6);</b> R' = CCMe₃, R= Me, <b>(7)). (2)</b> also reacted in water with ethynylpyridine to form an unusual metallacycle "trimer" <b>(8)</b>. A mechanism for tltrimerizationtl is proposed. <b>(2)</b> also reacted with ethylene in water to form the diethyl iridium complex Ir(CH₂CH₃)₂(PMe₃)₃CI <b>(8)</b>. Encouraged by these results, catalytic hydrogenation of unsaturates in water was investigated. It was found that <b>(2)</b> is active as a water soluble catalyst for hydrogenation of unsaturates. A mechanism for catalytic hydrogenation was proposed. / Ph. D.
36

The kinetics of the chromic acid oxidation of acetaldehyde

McCarthy, Edward Raymond January 1952 (has links)
The kinetics for the reaction of the oxidation of acetaldehyde by chromic acid in aqueous medium has been studied in an attempt to extend the present knowledge of oxidation by chromic acid. In particular, these experiments were undertaken in order to see if there are any similarities between this reaction and the oxidation of isopropyl alcohol in aqueous medium, which other investigators have studied. The main runs were carried out at 25°, at an ionic strength of 0.3. The reaction was followed by the decrease in chromic acid concentration as determined with the Beckman Spectrophotometer. In all of the runs, the concentrations of acetaldehyde and H⁺ were in excess of the chromic acid concentrations. It was found that the oxidation of acetaldehyde is first order in acetaldehyde and first order in HCrO₄⁻, (but not strictly first order in total chromic acid). The reaction is roughly second order in H⁺. Mn⁺² has an inhibitory effect upon the rate, as has been found in the isopropyl alcohol oxidation. Because of the similarity in kinetic behavior between acetaldehyde and isopropyl alcohol, the mechanisms are probably very similar. This mechanism for acetaldehyde oxidation has been discussed in some detail. / Master of Science
37

Ammonia as the driving factor for aerobic ammonia oxidizers

Ghimire, Sabita 20 July 2023 (has links)
No description available.
38

Cometabolic biodegradation of halogenated aliphatic hydrocarbons by ammonia-oxidizing microorganisms naturally associated with wetland plant roots

Qin, Ke January 2014 (has links)
No description available.
39

Mainstream Deammonification process monitoring by bacterial activity tests

Carranza Muñoz, Andrea January 2020 (has links)
Deammonification is a widely used technology for side stream treatment with rich ammonium streams at relatively high temperatures, such as, the reject water coming from dewatering units in treatment of digested sludge and industrial wastewaters. The deammonification process has lower operational costs than conventional systems, consumes less energy, enables the increase of biogas production and it is easy to implement. However, this technology has not yet been applied in full- scale mainstream treatment due to its restrictions in coping with high C/N ratios, low temperatures, and the need for post-treatment processes. These conditions are allegedly negative to the growth and performance of anammox bacteria affecting the bacterial groups’ behavior in the process. This master thesis project aimed to evaluate the feasibility of using deammonification to remove nitrogen from mainstream wastewater, which was studied by monitoring the bacterial activity in a pilot scale reactor. The different bacterial groups involved (AOB, NOB, heterotrophs, and denitrifiers) were monitored by weekly measuring their activity in batch activity tests. The results allowed the evaluation of different operational scenarios and their impact by following up on the changes in the bacterial competition. The study was conducted for six months in a single-stage IFAS (integrated fixed-film activated sludge) pilot-scale reactor located in Stockholm and fed with pretreated (with a UASB) municipal wastewater. The different operational scenarios involved changes in temperature, aeration patterns, DO concentration, SRT, and HRT. The adjustment of these features was done in the interest of promoting AOB and anammox bacterial growth, leading to an improvement of the deammonification efficiency in future studies. However, the chosen operational conditions were to enhance bacterial competition and facilitate its visualization, not to maximize nitrogen removal. Thus, the most suitable scenario found during this study included DO concentration of 1.5 mg/L with 10 aeration-20 non-aeration pattern and ensured nitrogen removal rates within normal values while allowing the monitoring of all the bacterial groups. TN removal reached a value above 50% and NH4-N above 95%, whereas nitrogen Removal Rate (NRR) increased to 30g/N/m3-d and the system had an overall nitrogen removal efficiency of 75%. Nevertheless, it was proven that in the right environment, the necessary bacterial groups can be selectively accumulated and successfully perform deammonification and reduce nitrogen levels in mainstream wastewater. / Deammonifikation är en välanvänd teknik för rening av sidoströmmar med höga ammoniumkoncentrationer vid relativt hög temperatur, som till exempel rejektvatten från avvattning av rötslam eller industriellt avloppsvatten. Deammonifikationsprocessen har lägre driftkostnad än konventionella reningsprocesser, förbrukar mindre energi samt möjliggör högre biogasproduktion samtidigt som processen är enkel att implementera. Reningstekniken har dock ännu inte tillämpats i fullskala för rening av huvudströmmen på grund av den höga C/N-kvoten och de låga vattentemperaturerna i kommunalt avloppsvatten samt behovet av efterbehandling. Detta anses ha en negativ inverkan på anammoxbakteriernas tillväxthastighet och funktion vilket påverkar bakteriegruppens beteende i processen. Syftet med detta examensarbete var att utvärdera om det är praktiskt genomförbart att använda deammonifikation för att rena kväve från kommunalt avloppsvatten, vilket följdes upp genom att studera bakterieaktiviteten i en pilotskalereaktor. De involverade bakteriegrupperna (AOB, NOB, heterotrofer och denitrifierare) övervakades genom att mäta den mikrobiella aktiviteten varje vecka med hjälp av batch-tester. Resultaten användes till att utvärdera olika driftstrategier och deras effekt genom att följa förändringarna i mikrobiell aktivitet hos de konkurrerande bakteriegrupperna. Studien genomfördes i Stockholm under sex månader i en enstegs-IFAS-pilotskalereaktor (integrerad process med biofilm på fast bärarmaterial och aktivslam) som matades med kommunalt avloppsvatten som förbehandlats i en UASB-reaktor. De olika driftstrategierna omfattade olika temperaturer, luftningsstrategier, syrekoncentrationer, slamåldrar och hydrauliska uppehållstider. Syftet med driftstrategierna var att främja AOB- och anammoxbakteriers tillväxt för att i framtida studier kunna erhålla en förbättrad deammonifikationsprocess. Syftet i denna studie var dock i första hand att förbättra den bakteriella konkurrensen och göra den lättare att mäta, inte att uppnå bästa möjliga kväverening. Den driftstrategi som gav bäst resultat i denna studie innebar att hålla en syrehalt på 1,5 mg/l med 10 minuter luftning följt av 20 minuter utan luftning vilket säkerställde en normal kväveavskiljning och samtidigt möjliggjorde övervakning av samtliga fyra bakteriegrupper. Totalkväveavskiljningen var över 50 % och ammoniumavskiljningen över 95 % medan kvävereningsaktiviteten ökade till 30 g N/m3-d och systemet hade en övergripande effektivitet på 75 %. Studien visade att under rätt förutsättningar kan de nödvändiga bakteriegrupperna selekteras fram och deammonifikation av kommunalt avloppsvatten kan utföras på ett framgångsrikt sätt.
40

Treatment of High-Strength Nitrogen Wasetewater With a Hollow-Fiber Membrane-Aerated Biofilm Reactor: A Comprehensive Evaluation

Gilmore, Kevin R. 17 September 2008 (has links)
Protecting the quality and quantity of our water resources requires advanced treatment technologies capable of removing nutrients from wastewater. This research work investigated the capability of one such technology, a hollow-fiber membrane-aerated biofilm reactor (HFMBR), to achieve completely autotrophic nitrogen removal from a wastewater with high nitrogen content. Because the extent of oxygenation is a key parameter for controlling the metabolic processes that occur in a wastewater treatment system, the first part of the research investigated oxygen transfer characteristics of the HFMBR in clean water conditions and with actively growing biofilm. A mechanistic model for oxygen concentration and flux as a function of length along the non-porous membrane fibers that comprise the HFMBR was developed based on material properties and physical dimensions. This model reflects the diffusion mechanism of non-porous membranes; namely that oxygen follows a sorption-dissolution-diffusion mechanism. This is in contrast to microporous membranes in which oxygen is in the gas phase in the fiber pores up to the membrane surface, resulting in higher biofilm pore liquid dissolved oxygen concentrations. Compared to offgas oxygen analysis from the HFMBR while in operation with biofilm growing, the model overpredicted mass transfer by a factor of approximately 1.3. This was in contrast to empirical mass transfer coefficient-based methods, which were determined using either bulk aqueous phase dissolved oxygen (DO) concentration or the DO concentration at the membrane-liquid interface, measured with oxygen microsensors. The mass transfer coefficient determined with the DO measured at the interface was the best predictor of actual oxygen transfer under biofilm conditions, while the bulk liquid coefficient underpredicted by a factor of 3. The mechanistic model exhibited sensitivity to parameters such as the initial lumen oxygen concentration (at the entry to the fiber) and the diffusion coefficient and partitioning coefficients of oxygen in the silicone membrane material. The mechanistic model has several advantages over empirical-based methods. Namely, it does not require experimental determination of KL, it is relatively simple to solve without the use of advanced mathematical software, and it is based upon selection of the membrane-biofilm interfacial DO concentration. The last of these is of particular importance when designing and operating HFMBR systems with redox (aerobic/anoxic/anaerobic) stratification, because the DO concentration will determine the nature of the microenvironments, the microorganisms present, and the metabolisms that occur. During the second phase of the research, the coupling of two autotrophic metabolisms, partial nitrification to nitrite (nitritation) and anaerobic ammonium oxidation, was demonstrated in a single HFMBR. The system successfully treated a high-strength nitrogen wastewater intended to mimic a urine stream from such sources as extended space missions. For the last 250 days of operation, operating with an average oxygen to ammonia flux (J<sub>O₂</sub>/J<sub>NH₄⁺</sub>) of 3.0 resulted in an average nitrogen removal of 74%, with no external organic carbon added. Control of nitrite-oxidizing bacteria (NOB) presented a challenge that was addressed by maintaining the J<sub>O₂</sub>/J<sub>NH₄⁺</sub> below the stoichiometric threshold for complete nitrification to nitrate (4.57 g O₂ / g NH₄⁺). The DO-limiting condition resulted in formation of harmful gaseous emissions of nitrogen oxides (NO, N2O), which could not be prevented by short-term control strategies. Controlling JO2/JNH4+ prevented NOB proliferation long enough to allow an anaerobic ammoniaoxidizing bacteria (AnaerAOB) population to develop and be retained for >250 days. Addition of a supplemental nutrient solution may have contributed to the growth of AnaerAOB by overcoming a possible micronutrient deficiency. Disappearance of the gaseous nitrogen oxide emissions coincided with the onset of anaerobic ammonium oxidation, demonstrating a benefit of coupling these two autotrophic metabolisms in one reactor. Obvious differences in biofilm density were evident across the biofilm depth, with a region of low density in the middle of the biofilm, suggesting that low cell density or exocellular polymeric substances were primarily present in this region, Microbial community analysis using fluorescence in situ hybridization (FISH) did not reveal consistent trends with respect to length along the fibers, but radial stratification of aerobic ammonia-oxidizing bacteria (AerAOB), NOB, and AnaerAOB were visible in biofilm section samples. AerAOB were largely found in the first 25% of the biofilm near the membrane, AnaerAOB were found in the outer 30%, and NOB were found most often in the mid-depth region of the biofilm. This community structure demonstrates the importance of oxygen availability as a determinant of how microbial groups spatially distribute within an HFMBR biofilm. The combination of these two aspects of the research, predictive oxygen transfer capability and the effect of oxygen control on performance and populations, provides a foundation for future application of HFMBR technology to a broad range of wastewaters and treatment scenarios. / Ph. D.

Page generated in 0.0551 seconds