• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 2
  • Tagged with
  • 20
  • 20
  • 9
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo ab initio da adsorção de átomos de zircônio sobre superfí­cies de óxido de cério: Zrn/CeO2(111) / Ab initio study of zirconium atons adsorption on cerium oxide surfaces: Zrn/CeO2(111)

Mucelini, Johnatan 19 July 2018 (has links)
Catalisadores baseados em óxidos de cério (CeOx, 3/2≤ x ≤ 2) como suporte são utilizados em várias reações de alto interesse econômico, por exemplo as reações de catalizadores de três-vias. Sabe-se que é possível melhorar as propriedade catalíticas da céria, através da mistura com óxido de zircônio e com a adição de partículas metálicas na superfície do material. Entretanto, a deposição de átomos de Zr sobre CeO2(111) é pouco explorada apesar de já ter sido utilizada para a síntese de nanopartículas de Ag de tamanho controlado. Uma das particularidades dos sistemas Zr/CeO2(111) é formar ilhas altura entre 1,5 e 3,0 Å sobre a superfície da céria que são sugeridas na literatura com camadas de Zr-O e O-Zr-O. Entretanto, a natureza e magnitudes das interações entre Zr e CeO2(111) ainda não são totalmente conhecidas, bem como as modificações causadas pelo Zr na superfície de CeO2 e os mecanismos que controlam a oxidação do Zr e a formação de ZrO2 na superfície. Visando entender as interações Zr/CeO2(111) e a formação de ZrO2 sobre CeO2(111), realizou-se um estudo teórico da adsorção de n (1 ≤n ≤ 4) adatomos de Zr sobre CeO2(111), e da formação de ZrO2 sobre CeO2(111). As análises de carga indicam transferências de carga do adatomos de Zr para a superfície e mudança no estado de oxidação das espécies. Os Zr se oxidam á Zr4+ e interagem com O2- da superfície, onde quatro cátions Ce4+ se reduzem á Ce3+. Analises energéticas indicam que o processo é muito estabilizante, mais de 10 eV por Zr. Com o aumento da quantidade n de adatomos de Zr na superfície, observa-se 4 × n reduções de Ce4+ e migrações de O2- de dentro da superfície para próximo dos Zr4+, formando agregados de ZrO2 sobre a superfície. A migração de O se deve a dois fatores, a interação dos O2- com Zr4+ no agregado é mais estável do que a interação dos O2- com Ce3+ dentro da superfície, e a migração de O diminuir a tensão causada pelo maior raio do Ce3+ em relação ao Ce4+. Em adição, foi encontrado uma tendência de estabilidade para os Zr4+ migrarem para sítios Ce dentro da superfície, devido a maior quantidade de coordenações Zr-O e a redução da tensão criada pelos Ce3+. / Cerium oxides (CeOx, 3/2≤ x ≤ 2) based catalysts are employed in several reactions with high economic interest, such as the reaction in three-way-catalysts. It is well know that is possible to improve the ceria catalytic properties, by mixing with zirconium oxide and adding metallic particles over the material surface. Meanwhile, the deposition of Zr atoms over CeO2(111) is little explored although it has already been used for synthesis Ag nanoparticles of controlled size. One of the particularities of the Zr/CeO2(111) systems is to form islands of height between 1,5 and 3,0 Å on the surface of the ceria, which are suggested in the literature to be Zr-O and O-Zr-O layers. However, the nature and magnitudes of interactions between Zr and CeO2 surface are little know, as well as the CeO2 modifications induced by Zr and the mechanisms for Zr oxidation and ZrO2 formation over the surface. Aiming to understand the Zr-CeO2(111) interactions and the ZrO2 formation over the CeO2(111), this mastering project perform a theoretical study of n (1 ≤ n ≤ 4) Zr adatoms absorption over CeO2(111), and the ZrO2 formation over CeO2(111). The charge analysis indicated charge transfer from Zr adatons to the surface together with change in species oxidation state. The Zr oxidize to Zr4+ and interact with surface O2- , where four Ce4+ cations reduce to Ce3+. Energetic analysis pointed out that the process is very stabilizing, more than 10 eV per Zr adatom. With the increase of quantity n of Zr adatoms over the surface, it is observer 4 × n Ce4+ reductions and O2- migrations from inside surface to close the Zr4+, forming ZrO2 aggregates over the surface. The O migration occurs because of two reasons, the O2- interaction with Zr4+ in the agregate is more stabilizer than the interaction of O2- with Ce3+ inside the surface, and the O migration decrease the strain produced bue to the radius of Ce3+ being greater than the Ce4+ radius. In addition, was found a stability trend for Zr4+ to migrate to inside surface Ce sites, due of the more Zr-O coordinations and release of the strain induced by Ce3+.
2

Estudo ab initio da adsorção de átomos de zircônio sobre superfí­cies de óxido de cério: Zrn/CeO2(111) / Ab initio study of zirconium atons adsorption on cerium oxide surfaces: Zrn/CeO2(111)

Johnatan Mucelini 19 July 2018 (has links)
Catalisadores baseados em óxidos de cério (CeOx, 3/2≤ x ≤ 2) como suporte são utilizados em várias reações de alto interesse econômico, por exemplo as reações de catalizadores de três-vias. Sabe-se que é possível melhorar as propriedade catalíticas da céria, através da mistura com óxido de zircônio e com a adição de partículas metálicas na superfície do material. Entretanto, a deposição de átomos de Zr sobre CeO2(111) é pouco explorada apesar de já ter sido utilizada para a síntese de nanopartículas de Ag de tamanho controlado. Uma das particularidades dos sistemas Zr/CeO2(111) é formar ilhas altura entre 1,5 e 3,0 Å sobre a superfície da céria que são sugeridas na literatura com camadas de Zr-O e O-Zr-O. Entretanto, a natureza e magnitudes das interações entre Zr e CeO2(111) ainda não são totalmente conhecidas, bem como as modificações causadas pelo Zr na superfície de CeO2 e os mecanismos que controlam a oxidação do Zr e a formação de ZrO2 na superfície. Visando entender as interações Zr/CeO2(111) e a formação de ZrO2 sobre CeO2(111), realizou-se um estudo teórico da adsorção de n (1 ≤n ≤ 4) adatomos de Zr sobre CeO2(111), e da formação de ZrO2 sobre CeO2(111). As análises de carga indicam transferências de carga do adatomos de Zr para a superfície e mudança no estado de oxidação das espécies. Os Zr se oxidam á Zr4+ e interagem com O2- da superfície, onde quatro cátions Ce4+ se reduzem á Ce3+. Analises energéticas indicam que o processo é muito estabilizante, mais de 10 eV por Zr. Com o aumento da quantidade n de adatomos de Zr na superfície, observa-se 4 × n reduções de Ce4+ e migrações de O2- de dentro da superfície para próximo dos Zr4+, formando agregados de ZrO2 sobre a superfície. A migração de O se deve a dois fatores, a interação dos O2- com Zr4+ no agregado é mais estável do que a interação dos O2- com Ce3+ dentro da superfície, e a migração de O diminuir a tensão causada pelo maior raio do Ce3+ em relação ao Ce4+. Em adição, foi encontrado uma tendência de estabilidade para os Zr4+ migrarem para sítios Ce dentro da superfície, devido a maior quantidade de coordenações Zr-O e a redução da tensão criada pelos Ce3+. / Cerium oxides (CeOx, 3/2≤ x ≤ 2) based catalysts are employed in several reactions with high economic interest, such as the reaction in three-way-catalysts. It is well know that is possible to improve the ceria catalytic properties, by mixing with zirconium oxide and adding metallic particles over the material surface. Meanwhile, the deposition of Zr atoms over CeO2(111) is little explored although it has already been used for synthesis Ag nanoparticles of controlled size. One of the particularities of the Zr/CeO2(111) systems is to form islands of height between 1,5 and 3,0 Å on the surface of the ceria, which are suggested in the literature to be Zr-O and O-Zr-O layers. However, the nature and magnitudes of interactions between Zr and CeO2 surface are little know, as well as the CeO2 modifications induced by Zr and the mechanisms for Zr oxidation and ZrO2 formation over the surface. Aiming to understand the Zr-CeO2(111) interactions and the ZrO2 formation over the CeO2(111), this mastering project perform a theoretical study of n (1 ≤ n ≤ 4) Zr adatoms absorption over CeO2(111), and the ZrO2 formation over CeO2(111). The charge analysis indicated charge transfer from Zr adatons to the surface together with change in species oxidation state. The Zr oxidize to Zr4+ and interact with surface O2- , where four Ce4+ cations reduce to Ce3+. Energetic analysis pointed out that the process is very stabilizing, more than 10 eV per Zr adatom. With the increase of quantity n of Zr adatoms over the surface, it is observer 4 × n Ce4+ reductions and O2- migrations from inside surface to close the Zr4+, forming ZrO2 aggregates over the surface. The O migration occurs because of two reasons, the O2- interaction with Zr4+ in the agregate is more stabilizer than the interaction of O2- with Ce3+ inside the surface, and the O migration decrease the strain produced bue to the radius of Ce3+ being greater than the Ce4+ radius. In addition, was found a stability trend for Zr4+ to migrate to inside surface Ce sites, due of the more Zr-O coordinations and release of the strain induced by Ce3+.
3

Structure And Oxygen Storage Capacity Of Ce1-xMxO2-δ(M=Sn, Zr, Mn, Fe, Co, Ni, Cu, La, Y, Pd, Pt, Ru) : Experimental And Density Functional Theoritical Study

Gupta, Asha 07 1900 (has links) (PDF)
Ceria (CeO2) containing materials are the subject of numerous investigations recently owing to their broad range of applications in various fields. Ceria is one of the most important components of three-way catalysts (TWC). Two unique features are responsible for making CeO2 a promising material for use either as a support or as an active catalyst: (a) the Ce3+/Ce4+ redox couple, and (b) its ability to shift between CeO2 and CeO2–δ under oxidizing and reducing conditions retaining fluorite structure. Despite widespread applications, pure CeO2 has a serious problem of degradation in performance with time at elevated temperatures. CeO2 undergoes rapid sintering under high operating temperatures, which leads to loss of oxygen buffer capacity and deactivation of the catalyst. In addition, the amount of lattice oxygen taking part in the redox reactions is small (δ ~ 0.05), and therefore unsatisfactory for practical applications. Therefore further improvement of OSC of CeO2 has led to development of new CeO2-based oxygen storage materials. Modifications of CeO2 with isovalent or aliovalent ion (noble metal, rare-earth or transition metal) confer new properties to the catalysts, such as better resistance to sintering and high catalytic activity. The demand for ceria-based oxygen storage materials were accelerated in the 1970s with the introduction of strict automotives exhaust treatment worldwide to combat the obnoxious gases released in the atmosphere causing deterioration of air quality. Significant developments have occurred in this field leading to better understanding of the catalysts synthesis, structure and improved catalytic activity. The introductory chapter 1 is a compendium to provide an overview of the topic, examine the critical lacunae in the field and the proposal for future developments. In chapter 2 we present the studies on synthesis and catalytic properties of Ce1– xSnxO2 (x= 0.1–0.5) solid solution and its Pd substituted analogue. A brief description of the single step solution combustion synthesis, catalysts characterization techniques such as powder X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) are given. Design and fabrication of temperature programmed reduction by hydrogen (H2-TPR) system in this laboratory is given in details. The home-made temperature programmed catalytic reaction system with a quadrupole mass spectrometer and an on-line gas-chromatograph for gas analysis is described. For the synthesis of Ce1–xSnxO2 solid solution by a single-step solution combustion method we have used tin oxalate as precursor for Sn. The compounds were characterized by XRD, XPS and TEM. Oxygen storage capacity of the Ce1–xSnxO2 solid solution was measured by H2-TPR. The cubic fluorite structure remained intact up to 50% of Sn substitution in CeO2, and the compounds were stable up to 700 °C. Oxygen storage capacity of Ce1–xSnxO2 was found to be much higher than that of Ce1–xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 to 400 °C. Pd2+ ions in Ce0.78Sn0.2Pd0.02O2-δare highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 μmolg–1s–1 at 50 °C. NO reduction by CO with 70% N2 selectivity was observed at ~200 °C and 100% N2 selectivity below 260 °C with 1000-5000 ppm NO. Pd2+ ion substituted Ce1–xSnxO2 catalyst can be used for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd0 and Ce4+/Ce3+ couples. With the goal to understand the improved OSC for Ce1–xSnxO2 solid solution, we have investigated the structure and its relative stability based on first-principles density functional calculations. In chapter 3, we present our studies on the relative stability of Ce1–xSnxO2 solid solution in fluorite in comparison to rutile structure of the other end-member SnO2. Analysis of relative energies of fluorite and rutile phases of CeO2, SnO2, and Ce1–xSnxO2 indicates that fluorite structure is most stable for Ce1–xSnxO2 solid solution. An analysis of local structural distortions reflected in phonon dispersion show that SnO2 in fluorite structure is highly unstable while CeO2 in rutile structure is only weakly unstable. Thus, Sn in Ce1–xSnxO2-fluorite structure is associated with high local structural distortion whereas Ce in Ce1–xSnxO2-rutile structure, if formed, will show only marginal local distortion. Determination of M–O (M = Ce or Sn) bond lengths and analysis of Born effective charges for the optimized structure of Ce1–xSnxO2 show that local coordination of these cations changes from ideal eight-fold coordination expected of Ce4+ ion in fluorite lattice, leading to generation of long and short Ce–O and Sn–O bonds in the doped structure. Bond valence analyses for all ions show the presence of oxygen with bond valence ~1.84. These weakly bonded oxygen ions are relevant for enhanced oxygen storage/release properties observed in Ce1–xSnxO2 solid solution. In chapter 4, we present detailed structural analysis of Ce1–xSnxO2 and Ce1–x– ySnxPdyO2–δsolid solutions based on our DFT calculations supported with EXAFS studies. Both EXAFS analysis and DFT calculation reveal that in the solid solution Ce exhibits 4 + 4 coordination, Sn exhibits 4 + 2 + 2 coordination and Pd has 4 + 3 coordination. While the oxygen in the first four coordination with short M—O bonds are strongly held in the lattice, the oxygens in the second and higher coordinations with long M—O bonds are weakly bound, and they are the activated oxygen in the lattice. Bond valence analysis shows that oxygen with valencies as low as 1.65 are created by the Sn and Pd ion substitution. Another interesting observation is that H2-TPR experiment of Ce1–xSnxO2 shows a broad peak starting from 200 to 500 oC, while the same reduction is achieved in a single step at ~110 oC in presence Pd2+ ion. Substitution of Pd2+ ion thus facilitates synergistic reduction of the catalyst at lower temperature. We have shown that simultaneous reduction of the Ce4+ and Sn4+ ions by Pd0 is the synergistic interaction leading to high oxygen storage capacity at low temperature. In chapter 5, we present the effect of substituting aliovalent Fe3+ ion on OSC and catalytic activity of ceria. Ce0.9Fe0.1O2–δ and Ce0.89Fe0.1Pd0.01O2–δ solid solutions have been synthesized by solution combustion method, which show higher oxygen storage/release property compared to CeO2 and Ce0.8Zr0.2O2. Temperature programmed reduction and XPS study reveal that the presence of Pd ion in Ce0.9Fe0.1O2–δ facilitates complete reduction of Fe3+ to Fe2+ state and partial reduction of Ce4+ to Ce3+ state at temperatures as low as 105 oC compared to 400 oC for monometal-ionic Ce0.9Fe0.1O2–δ. Fe3+ ion is reduced to Fe2 and not to Fe0 due to favorable redox potential for Ce4 + Fe2൅ → Ce3 + Fe3 reaction. Using first-principles density functional theory calculation we determine M—O (M = Pd, Fe, Ce) bond lengths, and find that bond lengths vary from shorter (2.16 Å) to longer (2.9 Å) bond distances compared to mean Ce—O bond distance of 2.34 Åfor CeO2. Using these results in bond valence analysis, we show that oxygen with bond valences as low as –1.55 are created, leading to activation of lattice oxygen in the bimetal ionic catalyst. Temperatures of CO oxidation and NO reduction by CO/H2 are lower with the bimetal ionic Ce0.89Fe0.1Pd0.01O2–δ catalyst compared to monometal-ionic Ce0.9Fe0.1O2–δ and Ce0.99Pd0.01O2–δ catalysts. From XPS studies of Pd impregnated on CeO2 and Fe2O3 oxides, we show that the synergism leading to low temperature activation of lattice oxygen in bimetal-ionic catalyst Ce0.89Fe0.1Pd0.01O2–δ is due to low-temperature reduction of Pd2 to Pd0, followed by Pd0 + 2Fe3൅ → Pd2 +2Fe2, Pd0 + 2Ce4൅ → Pd2 + 2Ce3redox reaction. In chapter 6, we simulate the structure of Ce1–xMxO2–δ (M = transition metal, noble metal and rare–earth ions) for theoretical understanding of origin of OSC in these oxides and to draw a general criteria required to increase the OSC in ceria. The relationship between the OSC and structural changes induced by the dopant ion was investigated by H2-TPR and first-principles based density functional calculations. Transition metal and noble metal ions substitution in ceria greatly enhances the reducibility of Ce1–xMxO2–δ (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare–earth ions substituted Ce1–xAxO2–δ (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation–oxygen bond length from ideal bond length of 2.34 Å (for CeO2). For example, our calculation for Ce28Mn4O62 structure shows that Mn—O bonds are in 4+2 coordination with average bond lengths of 2.0 and 3.06 Å respectively. While the four short Mn–O bond lengths for the calculated structure spans the bond distance region of Mn2O3, and the other two Mn–O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce—O bonds as well. Thus longer cation-oxygen bond lengths for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1–xMxO2–δ (M = Mn Fe, Co, Ni, Cu) further enhancement in OSC is observed in H2–TPR. This effect is reflected in our calculations by the presence of still longer bonds compared to the model without Pd ion doping. Synergistic effect is, therefore, due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La) our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y— O/La—O and Ce–O bonds make the structure very less susceptible to reduction [8]. Since Pd substituted Ce1–xSnxO2 showed high OSC and catalytic activity towards CO oxidation and NO reduction, we tested this catalyst for water-gas shift (WGS) reaction and the results are presented in chapter 7. Over 99.5 % CO conversion to H2 is observed at 300 ± 25 oC. Based on different characterization techniques we found that the present catalyst is resistant to deactivation due to carbonate formation and sintering of Pt on the surface when subjected to longer duration of reaction conditions. The catalyst does not require any pre-treatment or activation between start-up/shut-down reaction operations. Formation of side products such as methane, methanol, formaldehyde, coke etc. was not observed under the WGS reaction conditions indicating the high selectivity of the catalyst for H2. Temperature programmed reduction of the catalyst in hydrogen (H2–TPR) shows reversible reduction of Ce4+ to Ce3+, Sn4+ to Sn2+ and Pt4+ to Pt0 oxidation state with oxygen storage capacity (OSC) of 3500 μmol g–1 at 80 oC. Such high value of OSC indicates the presence of highly activated lattice oxygen. CO oxidation in presence of stoichiometric O2 shows 100 % conversion to CO2 at room temperature. The catalyst also exhibits 100% selectivity for CO2 at room temperature towards preferential oxidation (PROX) of residual CO in presence of excess hydrogen in the feed. To further validate our DFT results presented in the thesis, DFT calculations on Ce2Zr2O8–Ce2Zr2O7 system were performed and the results are given in the last chapter 8. Ce2Zr2O7 does not show any oxygen storage/release property unlike Ce2Zr2O8 (=Ce0.5Zr0.5O2). Bond lengths obtained from DFT simulation on Ce2Zr2O7 structure showed well-defined Ce—O and Zr—O bonds expected of the pyrochlore structure, unlike distribution of bond lengths as has been observed for Ce1–xMxO2–δ case. Absence of bonds distribution indicates that the oxygen sublattice is not distorted in Ce2Zr2O7 in agreement with its closed packed structure. Filling of the 1/8 of the tetrahedral oxide ion vacancies will result in Ce2Zr2O8 structure, and DFT calculation for this structure show wide distribution of bond lengths. Long Ce—O and Zr—O bonds appear in the bond-distribution plot, suggesting substantial distortion of the oxygen sublattice. Thus absence of longer cation-oxygen bond in pyrochlore structure validates the structural calculations presented in this thesis. Based on the results derived in all the chapters, a critical review of the work is presented and major conclusions are given in the last chapter
4

Oxygen Vacancy Chemistry in Ceria

Kullgren, Jolla January 2012 (has links)
Cerium(IV) oxide (CeO2), ceria, is an active metal oxide used in solid oxide fuel cells and for the purification of exhaust gases in vehicle emissions control. Behind these technically important applications of ceria lies one overriding feature, namely ceria's exceptional reduction-oxidation properties. These are enabled by the duality of the cerium ion which easily toggles between Ce4+ and Ce3+. Here the cerium 4f electrons and oxygen vacancies (missing oxygen ions in the structure) are key players. In this thesis, the nature of ceria's f electrons and oxygen vacancies are in focus, and examined with theoretical calculations. It is shown that for single oxygen vacancies at ceria surfaces, the intimate coupling between geometrical structure and electron localisation gives a multitude of almost degenerate local energy mimima. With many vacancies, the situation becomes even more complex, and not even state-of-the-art quantum-mechanical calculations manage to predict the experimentally observed phenomenon of vacancy clustering. Instead, an alternative set of computer experiments managed to produce stable vacancy chains and trimers consistent with experimental findings from the literature and revealed a new general principle for surface vacancy clustering. The rich surface chemistry of ceria involves not only oxygen vacancies but also other active oxygen species such as superoxide ions (O2−). Experiments have shown that nanocrystalline ceria demonstrates an unusually large oxygen storage capacity (OSC) and an appreciable low-temperature redox activity, which have been ascribed to superoxide species. A mechanism explaining these phenomena is presented. The ceria surface is also known to interact with SOx molecules, which is relevant both in the context of sulfur poisoning of ceria-based catalysts and sulfur recovery from them. In this thesis, the sulfur species and key mechanisms involved are identified.
5

Transition-metal based oxides for oxygen storage and energy-related applications

Huang, Xiubing January 2015 (has links)
The development of energy storage and conversion techniques with high efficiency and power density is of great importance for the sustainable development of our green world. Li-O₂ batteries with high theoretical energy density has attracted extensive attention. However there are still many issues waiting to be solved, such as low stability of cathode catalyst, as well as the deactivation of cathode by H₂O and CO₂ from air. Reversible solid oxide fuel cells can be used for electricity production by SOFCs and fuel production (H₂ and O₂) by SOECs. Thus, oxygen storage materials can bridge Li-O₂ batteries and reversible SOFCs with the purpose of increasing the whole efficiency of the system. The discovery of oxygen storage materials with reversible oxygen release/storage behaviours and high oxygen storage capacities dependent on temperature or oxygen partial pressures (e.g., inert and oxidation gases) still needs further research. The work in this thesis mainly focuses on the preparation of transition-metal based oxides (such as perovskite oxides, brownmillerite-type oxides, layered-perovskite oxides, coated β-MnO₂ nanorods, transition-metal doped CeO₂ nanocrystals) as oxygen storage materials and their energy-related applications, seeking to discover the principles for oxygen storage/release properties and their performance in energy conversion and storage applications. The prepared materials included nanostructured and bulk materials via various synthesis methods, including citrate-modified evaporation-induced self-assembly method, hydrothermal method, pechini method, as well as solid state method. This work investigated the oxygen storage capacities of several crystal structure types oxides based on transition-metals. Nanostructured La₀.₆Ca₀.₄Fe₁₋ₓCoₓO[sub](3-δ) and La₀.₆Ca₀.₄Mn₁₋ₓFeₓO[sub](3-δ) exhibit high oxygen storage capacities and stability under reductive 5%H₂/Ar, but the oxygen-storage content under inert argon is low, just about 0.2 wt%. Brownmillerite-type Ca₂AlMnO₅ is demonstrated to possess a large amount of oxygen release/storage capacities depending on temperature even under flowing oxygen, as well as high oxygen storage/release properties and reversibility under alternating inert and oxygen gases at 500 °C. Substituting Ga on the Al-site would reduce the oxygen storage capacities, even though these substituted samples still posses good reversibility. The effect of A-site species (Mg, Ca, Sr) have been also investigated and demonstrated. It can't obtain pure brownmillerite-type crystal structure when Ca is partially or totally substituted by Mg or Sr, resulting in poor reversibility and low oxygen storage capacities. Nanostructured layered-perovskite La₁.₇Ca₀.₃M₁₋ₓCuₓO[sub](4-δ) (M = Fe, Co, Ni, Cu) have also been investigated for oxygen storage and as potential cathodes for IT-SOFCs. Even though the as-prepared layered-perovskite oxides have been demonstrated to be good candidates as cathode materials for IT-SOFCs with high performance, they do not possess high amount of oxygen storage/release ability under inert atmospheres because of the robust phase stability. β-MnO₂ nanorods can release large amount of oxygen (ca. 9.2 wt%) with increasing temperature at about 560 °C under various gases (air, N₂). Coating β-MnO₂ nanorods with CeO₂ nanocrystals could result in lower temperatures for oxygen mobility and removal under N₂ because of the enhanced oxygen mobility between CeO₂₋ₓ and β-MnO₂, while coating β-MnO₂ nanorods with SnO₂ nanocrystals have no enhanced oxygen mobility behaviours. The results demonstrate the positive and negative synergetic effect between other metal oxides and β-MnO₂ on the oxygen migration. Cr- and Cu-doped CeO₂ nanocrystals (i.e. nanorods, nanocubes and nanoparticles) were chosen to investigate the effect of transition-metal doping on CeO₂ and their valence changes with temperature and various atmospheres, as well as their oxygen storage capacities. The effect of Cr- or Cu- doping on CeO₂ nanocrystal morphology and oxygen storage capacities have been investigated and demonstrated. This provides some basic information for transition-metals doped CeO₂ nanocrystal evolution and stability, as well as further applications in energy-related fields, such as three-way catalysts, electrode materials in solid oxide fuel cells and Li-air batteries.
6

Study on Metal Oxide Nanomaterials for Automotive Catalysts / 自動車用触媒における金属酸化物ナノ材料に関する研究

Imagawa, Haruo 23 May 2012 (has links)
Kyoto University (京都大学) / 0048 / 新制・論文博士 / 博士(工学) / 乙第12680号 / 論工博第4082号 / 新制||工||1548(附属図書館) / 29813 / (主査)教授 田中 庸裕, 教授 江口 浩一, 教授 安部 武志 / 学位規則第4条第2項該当
7

The Development of Diving Capabilities in Weddell Seal (<i>Leptonychotes Weddellii</i>) Pups Throughout Early Ontogeny

Weitzner, Emma 01 June 2019 (has links) (PDF)
Weddell seals (Leptonychotes weddellii) are among the deepest diving pinnipeds (i.e., seals, sea lions, and walrus) and one of the best studied marine mammals in the world; as such, these seals are considered a model species for the study of diving physiology and behavior. Adult Weddell seal dive physiology is rather comprehensively understood, yet previous research has excluded an examination of pups’ initial independent diving attempts, beginning instead with the diving capabilities of near-weaning individuals at four to five weeks of age. This is beyond the point many pups have attempted their first independent dives; pups begin to enter the water at 8-10 days after birth, with some observed in the water earlier. The aim of this study was to investigate the development of diving capabilities and fine-scale behaviors of Weddell seal pups beginning at one week of age throughout their dependence period. Pups were sampled longitudinally at 1, 3, 5, and 7 weeks of age. Total body oxygen stores (TBO2, mL O2) were calculated as the sum of blood, muscle, and lung oxygen stores for each seal at all time points. Blood samples were collected under sedation, muscle oxygen parameters were interpolated, and lung oxygen content was extrapolated from adult values. Flipper-mounted time-depth recorders were used to collect concurrent dive behavior data. In chapter 1, I hypothesized that diving capability (TBO2) would be more strongly correlated with dive experience than calendar age; to examine this, age, mass, and diving parameters were correlated with oxygen stores. I instead found mass and age were most significantly correlated with individual tissue oxygen stores and TBO2. I predicted diving experience would be an important driver of oxygen storage development due to hypoxia exposure, but pups spent the majority of their time in the water at the surface and had little to no exposure to hypoxia during dependence. Increases in mass may enable early advances in diving ability, and with increased diving capabilities, pups will be able to become successful independent foragers. Later exposure to hypoxia may be the key to the subsequent increases in TBO2 observed in yearlings and juveniles. In chapter 2, I used TDR data to predict when pups would be in the water based on developmental, temporal, and environmental factors including age, weaning status, time of day, and weather parameters. Pups spent the most time in the water and made their deepest, longest, and most frequent dives during the late night and early morning hours. These data indicate pups are following the diving patterns of their mothers, which follow the diurnal vertical migration of their prey. The data also suggest Weddell seal pups most likely prioritize learning to swim and navigate as opposed to practicing foraging while still dependent. It is critical for pups to develop their swimming, navigational, and diving abilities while they are still with their moms to ensure their survival. This study is the first to describe the complete trajectory of the development of diving physiology and behavior in Weddell seal pups throughout dependence. It is important to understand how the internal diving physiology of Weddell seal pups develops because this directly determines their diving capabilities and their ability to forage successfully, which in turn directly correlates with their survival. Pup survival is an indicator of population growth rates, so the development of diving physiology in pups can lend insights into larger population-level trends.
8

Synthesis and Structures of Compounds with Anion-Derived Functions / アニオン由来の機能をもつ化合物の合成と構造

Goto, Yoshihiro 24 November 2021 (has links)
京都大学 / 新制・論文博士 / 博士(工学) / 乙第13457号 / 論工博第4197号 / 新制||工||1770(附属図書館) / (主査)教授 陰山 洋, 教授 安部 武志, 教授 江口 浩一 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
9

Synthesis, Structure And Redox Catalytic Properties Of Pt And Pd Ion Substituted Ce1-xMxO2(M= Ti, Zr & Hf) Oxygen Storage Capacity Nano-materials

Baidya, Tinku 11 1900 (has links)
Three-way catalysis (TWC) involves simultaneous removal of the three pollutants (i.e., CO, NOx, and HCs) which led to the branch of auto-exhaust catalysis. CeO2 has become the main component of TWC catalyst because of its oxygen storage storage (OSC) property to supply oxygen under excess fuel condition and store oxygen under lean condition. Substitution of smaller isovalent cations like Ti4+, Zr4+ and Hf4+ ions in CeO2 forming Ce1-xMxO2 (M = Ti, Zr &Hf) solid solution enhance the OSC property. XRD along with EXAFS study showed that cations arrange in FCC lattice but oxygen coordination around metal ions is split into 4 + 4 coordination in Ce1-xMxO2 instead of ideal 8 coordination in CeO2. The longer Ce/Ti/Zr – O bonds are weakly bound and can be easily removed by H2 giving high OSC value than pure CeO2. Among the three OSC systems studied here, Ce0.5Zr0.5O2 showed exceptionally high OSC which lead to formation of a new a pyrochlore, Ce2Zr2O6.3. This compound is nearly metallic. Ce0.85-xTi0.15PtxO2- (x = 0.01 & 0.02) crystallizes in fluorite structure and Pt is ionically substituted with 2+ and 4+ oxidation states. H/Pt atomic ratio at 30 oC over Ce0.84Ti0.15Pt0.01O2- is 5 and over Ce0.99Pt0.01O2-δ is 4 against just 0.078 for 8 nm Pt metal particles. Carbon monoxide and hydrocarbon oxidation activity are much higher over Ce1-x-yTixPtyO2 (x= 0.15, y= 0.01, 0.02) compared to Ce1-xPtxO2 (x= 0.01, 0.02). Synergistic involvement of Pt2+/Pt0 and Ti4+/Ti3+ redox couples in addition to Ce4+/Ce3+ due to the overlap of Pt(5d), Ti(3d), and Ce(4f) bands near EF is shown to be responsible for enhanced redox property and higher catalytic activity. On substitution of Pd ion in Ce1-xTixO2, more lattice oxygen is found to be more labile than Pd in CeO2. The easy removal of oxygen from the more reducible Ti4+ containing support plays a major role in showing higher catalytic activity of this material for CO oxidation, N2O and NO reduction by CO. The catalyst shows 100% N2 selectivity  240 oC in NO+CO reaction. It has been shown that oxide ion vacancy creation created by removal of lattice oxygen by CO is responsible for dissociation of NO or N2O at a lower temperature. Ionicity of Pd2+ ion in different support could be varied by varying the ionicity of the oxide support itself. Rates of CO oxidation increases or activation energy decreases over Ce1-xPdxO2-δ, Ti1-xPdxO2-δ and Ce1-x-yMxPdyO2-δ (M = Ti, Zr, Hf ; x = 0.25, 0.4 ; y = 0.02) is increased with ionicity of Pd2+ ion. The substitution of Sn in CeO2 forming Ce1-xSnxO2 (x = 0.1-0.5) solid solution was prepared using tin oxalate precursor by solution combustion method. These oxides can be promising support for noble metals because of the Sn4+  Sn2+ redox couple in addition to Ce3+/Ce4+. The two electron process involved in the redox reaction of Sn as well as easy reducibility of Sn4+ to Sn2+ offers a far better redox catalytic system hitherto not reported. Ce1-xSnxO2 solid solutions as well as Pd ion substituted Ce1-xSnxO2 was prepared for the first time.
10

Vliv oxidačního stupně aktivní podložky na reaktivitu přechodových kovů / Reactivity of transition metals - influence of the degree of oxidation of active substrate

Kettner, Miroslav January 2017 (has links)
The impacts of fluorine doping of ceria are studied by means of surface science experimental methods. Fluorine-doped and fluorine-free ceria layers are epitaxially grown on rhodium single crystals and their properties are compared in regular and inverse catalyst configurations. A procedure for epitaxial growth of CeO2(110) and CeOxFy(110) layers on Rh(110) single crystal is developed and described in detail. Shape alterations of Ce 3d spectrum brought about by fluorine doping are explained and a suitable deconvolution method is proposed. Special attention is focused towards stability of fluorine in ceria. Presented data show that fluorine incorporation in ceria lattice causes stable reduction of ceria, which withstands up to 200řC in near-ambient pressure conditions. Morphological changes are observed due to elongation of surface lattice constant of reduced ceria. Oxygen storage capacities and hydrogen oxidation reaction rates of four different studied systems are compared and discussed. The twofold nature of oxygen exposure of fluorinated ceria is discovered and explained. Oxygen repels fluorine from the surface, while the remaining part of fluorine is expelled to adsorbate positions, where its electronic state is altered. Moreover, such fluorine is prone to interact with atomic hydrogen. This reaction is...

Page generated in 0.1698 seconds