• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Theoretical Models for Blood Flow Regulation in Heterogeneous Microvascular Networks

Fry, Brendan January 2013 (has links)
Proper distribution of blood flow in the microcirculation is necessary to match changing oxygen demands in various tissues. How this coordination of perfusion and consumption occurs in heterogeneous microvascular networks remains incompletely understood. Theoretical models are powerful tools that can help bridge this knowledge gap by simulating a range of conditions difficult to obtain experimentally. Here, an algorithm is first developed to estimate blood flow rates in large microvascular networks. Then, a theoretical model is presented for metabolic blood flow regulation in a realistic heterogeneous network structure, derived from experimental results from hamster cremaster muscle in control and dilated states. The model is based on modulation of arteriolar diameters according to the length-tension characteristics of vascular smooth muscle. Responses of smooth muscle cell tone to myogenic, shear-dependent, and metabolic stimuli are included. Blood flow is simulated including unequal hematocrit partition at diverging vessel bifurcations. Convective and diffusive oxygen transport in the network is simulated, and oxygen-dependent metabolic signals are assumed to be conducted upstream from distal vessels to arterioles. Simulations are carried out over a range of tissue oxygen demand. With increasing demand, arterioles dilate, blood flow increases, and the numbers of flowing arterioles and capillaries, as defined by red-blood-cell flux above a small threshold value, increase. Unequal hematocrit partition at diverging bifurcations contributes to capillary recruitment and enhances tissue oxygenation. The results imply that microvessel recruitment can occur as a consequence of local control of arteriolar tone. The effectiveness of red-blood-cell-dependent and independent mechanisms for the metabolic response of local blood flow regulation is examined over a range of tissue oxygen demands. Model results suggest that although a red-blood-cell-independent mechanism is most effective in increasing flow and preventing hypoxia, the addition of a red-blood-cell-dependent mechanism leads to a higher median tissue oxygen level, indicating distinct roles for the two mechanisms. In summary, flow rates in large microvessel networks can be estimated with the proposed algorithm, and the theoretical model for flow regulation predicts a mechanism for capillary recruitment, as well as roles for red-blood-cell-dependent and independent mechanisms in the metabolic regulation of blood flow in heterogeneous microvascular networks.
12

Thermodynamic Investigation into Chemical Stability of (La,Sr)CrxFe1-xO3-δ and Dual-Phase (La,Sr)CrxFe1-xO3-δ/ stabilized Zirconia for Oxygen Transport Membranes

Sabarou, Hooman 19 August 2019 (has links)
Ceramics oxides with mixed ionic and electronic conductivity have received a lot of attention due to their wide range of applications in solid oxide fuel cells, interconnects, gas sensors, and ion transport membranes. However, owing to harsh operating conditions, the choice of proper materials and engineering their properties are still challenging. Perovskite and fluorite structures are two promising structures for ceramic membrane applications. The objective of this research is to explore the stability of lanthanum chromite-based perovskite ((La,Sr)(Cr,Fe)O3-δ) as single phases and dual-phase composites with fluorite phases under fabrication and operating conditions of Oxygen Transport Membranes (OTM). The current research has been categorized into two sections: structural and chemical stability of perovskite phases and dual-phase perovskite/fluorite composites. Also, investigation on both categories has been conducted with two separate approaches: experimental examinations and computational Thermodynamic. In the computational part, independent methods have been considered for the single-phase perovskite and dual-phase perovskite/fluorite composites. In the experimental section, the bulk chemical stability of the dual-phase samples has been examined under controlled oxygen partial pressure p(O2) atmospheres at 1400ᵒC for 10 hours with slow and fast cooling rates. Besides, the phase stability of the perovskite structures as a single-phase has been also examined under OTM fabrication conditions. The results present new phenomena in the chemical stabilities of the materials. They include formations of liquid phases, Sr-segregation, and perovskite phase separations. The correlations between compositions/ temperature/ p(O2) and secondary phases have been investigated to improve the chemical stability and extend the lifetime of the materials. The findings in this thesis enhance the knowledge about the chemical stabilities of OTMs and help to develop more reliable materials for ceramic-based OTMs.
13

Development of Synergistic Oxygenating Antibacterial Hydrogel Dressings for Reducing Infection in Diabetic Dermal Wounds

Abri, Shahrzad 14 May 2022 (has links)
No description available.
14

Thermodynamic Investigation into Chemical Stability of (La,Sr)CrxFe1-xO3-δ and Dual-Phase (La,Sr)CrxFe1-xO3-δ/ stabilized Zirconia for Oxygen Transport Membranes

Sabarou, Hooman 12 November 2019 (has links)
Ceramics oxides with mixed ionic and electronic conductivity have received a lot of attention due to their wide range of applications in solid oxide fuel cells, interconnects, gas sensors, and ion transport membranes. However, owing to harsh operating conditions, the choice of proper materials and engineering their properties are still challenging. Perovskite and fluorite structures are two promising structures for ceramic membrane applications. The objective of this research is to explore the stability of lanthanum chromite-based perovskite ((La,Sr)(Cr,Fe)O3-δ) as single phases and dual-phase composites with fluorite phases under fabrication and operating conditions of Oxygen Transport Membranes (OTM). The current research has been categorized into two sections: structural and chemical stability of perovskite phases and dual-phase perovskite/fluorite composites. Also, investigation on both categories has been conducted with two separate approaches: experimental examinations and computational Thermodynamic. In the computational part, independent methods have been considered for the single-phase perovskite and dual-phase perovskite/fluorite composites. In the experimental section, the bulk chemical stability of the dual-phase samples has been examined under controlled oxygen partial pressure p(O2) atmospheres at 1400ᵒC for 10 hours with slow and fast cooling rates. Besides, the phase stability of the perovskite structures as a single-phase has been also examined under OTM fabrication conditions. The results present new phenomena in the chemical stabilities of the materials. They include formations of liquid phases, Sr-segregation, and perovskite phase separations. The correlations between compositions/ temperature/ p(O2) and secondary phases have been investigated to improve the chemical stability and extend the lifetime of the materials. The findings in this thesis enhance the knowledge about the chemical stabilities of OTMs and help to develop more reliable materials for ceramic-based OTMs.
15

Modeling blood vessels and oxygen diffusion into brain tissue

Caldwell, Mark Alexander January 2019 (has links)
No description available.
16

Oxygenation Potential of Tense and Relaxed State Polymerized Hemoglobin Mixtures:A Potential Therapeutic to Accelerate Chronic Wound Healing

Richardson, Kristopher Emil January 2017 (has links)
No description available.
17

COUPLED OXYGEN TRANSPORT ANALYSIS IN THE AVASCULAR WALL OF A CORONARY ARTERY STENOSIS DURING ANGIOPLASTY

VAIDYA, VINAYAK S. 27 September 2005 (has links)
No description available.
18

Synthesis and Biophysical Characterization of Polymerized Hemoglobin Dispersions of Varying Size and Oxygen Affinity as Potential Oxygen Carriers for use in Transfusion Medicine

Zhou, Yipin 15 December 2011 (has links)
No description available.
19

Expression, Purification, and Characterization of Mammalian and Earthworm Hemoglobins

Elmer, Jacob James 15 December 2011 (has links)
No description available.
20

Why is there still so much confusion about VO2 plateau? A re-examination of the work of A.V. Hill

Castle, Richard Vincent 01 June 2011 (has links)
Maximal oxygen uptake (VO2max) is regarded as the gold standard for assessing aerobic fitness. In 1923, Hill et al. proposed that VO2max represents the maximal ability of the body to take in and consume O2 during strenuous exercise. Recently, however, controversy has arisen over the issue of whether a leveling off, or "plateau" in VO2 is necessary to verify attainment of VO2max. Purpose: To compare two different VO2max protocols and determine if both protocols show direct evidence of an upper limit on VO2. Methods: Nine runners (18-35 years old) completed a continuous graded exercise test (CGXT), followed by a discontinuous graded exercise test (DGXT). The CGXT consisted of gradually increasing treadmill running speed to the point of volitional exhaustion; the highest speed attained was labeled the peak treadmill speed. Over the next several days, participants ran at 80%, 90%, 100%, 105%, and 110% of peak treadmill speed for 10 minutes, or until volitional exhaustion was reached. Results: All participants (n=9) achieved a "VO2 ceiling" (or upper limit) on the DGXT, while only 44% (n=4) achieved a "VO2 plateau" on the CGXT. There was no significant difference between the VO2max obtained from a CGXT (57.4 ± 2.6 mL*kg-1min-1) and DGXT (60.0 ± 3.1 mL*kg-1min-1). There was no difference between oxygen uptake measured at 90%, 100%, 105%, and 110% of PTV (p>0.05). However, the highest VO2 recorded at 80% PTV was significantly lower than that recorded at all other velocities (p<0.05). Conclusion: The VO2 ceiling effect on a DGXT is inherently different than the VO2 plateau effect on a CGXT. In this study, a ceiling was always seen on the DGXT, but a plateau was not always seen on the CGXT.

Page generated in 0.061 seconds