• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • Tagged with
  • 12
  • 12
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detection and segmentation of moving objects in video using optical vector flow estimation

Malhotra, Rishabh 24 July 2008
The objective of this thesis is to detect and identify moving objects in a video sequence. The currently available techniques for motion estimation can be broadly categorized into two main classes: block matching methods and optical flow methods.<p>This thesis investigates the different motion estimation algorithms used for video processing applications. Among the available motion estimation methods, the Lucas Kanade Optical Flow Algorithm has been used in this thesis for detection of moving objects in a video sequence. Derivatives of image brightness with respect to x-direction, y-direction and time t are calculated to solve the Optical Flow Constraint Equation. The algorithm produces results in the form of horizontal and vertical components of optical flow velocity, u and v respectively. This optical flow velocity is measured in the form of vectors and has been used to segment the moving objects from the video sequence. The algorithm has been applied to different sets of synthetic and real video sequences.<p>This method has been modified to include parameters such as neighborhood size and Gaussian pyramid filtering which improve the motion estimation process. The concept of Gaussian pyramids has been used to simplify the complex video sequences and the optical flow algorithm has been applied to different levels of pyramids. The estimated motion derived from the difference in the optical flow vectors for moving objects and stationary background has been used to segment the moving objects in the video sequences. A combination of erosion and dilation techniques is then used to improve the quality of already segmented content.<p>The Lucas Kanade Optical Flow Algorithm along with other considered parameters produces encouraging motion estimation and segmentation results. The consistency of the algorithm has been tested by the usage of different types of motion and video sequences. Other contributions of this thesis also include a comparative analysis of the optical flow algorithm with other existing motion estimation and segmentation techniques. The comparison shows that there is need to achieve a balance between accuracy and computational speed for the implementation of any motion estimation algorithm in real time for video surveillance.
2

Detection and segmentation of moving objects in video using optical vector flow estimation

Malhotra, Rishabh 24 July 2008 (has links)
The objective of this thesis is to detect and identify moving objects in a video sequence. The currently available techniques for motion estimation can be broadly categorized into two main classes: block matching methods and optical flow methods.<p>This thesis investigates the different motion estimation algorithms used for video processing applications. Among the available motion estimation methods, the Lucas Kanade Optical Flow Algorithm has been used in this thesis for detection of moving objects in a video sequence. Derivatives of image brightness with respect to x-direction, y-direction and time t are calculated to solve the Optical Flow Constraint Equation. The algorithm produces results in the form of horizontal and vertical components of optical flow velocity, u and v respectively. This optical flow velocity is measured in the form of vectors and has been used to segment the moving objects from the video sequence. The algorithm has been applied to different sets of synthetic and real video sequences.<p>This method has been modified to include parameters such as neighborhood size and Gaussian pyramid filtering which improve the motion estimation process. The concept of Gaussian pyramids has been used to simplify the complex video sequences and the optical flow algorithm has been applied to different levels of pyramids. The estimated motion derived from the difference in the optical flow vectors for moving objects and stationary background has been used to segment the moving objects in the video sequences. A combination of erosion and dilation techniques is then used to improve the quality of already segmented content.<p>The Lucas Kanade Optical Flow Algorithm along with other considered parameters produces encouraging motion estimation and segmentation results. The consistency of the algorithm has been tested by the usage of different types of motion and video sequences. Other contributions of this thesis also include a comparative analysis of the optical flow algorithm with other existing motion estimation and segmentation techniques. The comparison shows that there is need to achieve a balance between accuracy and computational speed for the implementation of any motion estimation algorithm in real time for video surveillance.
3

Multi-commodity flow estimation with partial counts on selected links

Kang, Dong Hun 25 April 2007 (has links)
The purpose of this research is to formulate a multi-commodity network flow model for vehicular traffic in a geographic area and develop a procedure for estimating traffic counts based on available partial traffic data for a selected subset of highway links. Due to the restriction of time and cost, traffic counts are not always observed for every highway link. Typically, about 50% of the links have traffic counts in urban highway networks. Also, it should be noted that the observed traffic counts are not free from random errors during the data collection process. As a result, an incoming flow into a highway node and an outgoing flow from the node do not usually match. They need to be adjusted to satisfy a flow conservation condition, which is one of the fundamental concepts in network flow analysis. In this dissertation, the multi-commodity link flows are estimated in a two-stage process. First, traffic flows of "empty" links, which have no observation data, are filled with deterministic user equilibrium traffic assignments. This user equilibrium assignment scheme assumes that travelers select their routes by their own interests without considering total cost of the system. The assignment also considers congestion effects by taking a link travel cost as a function of traffic volume on the link. As a result, the assignment problem has a nonlinear objective function and linear network constraints. The modified Frank-Wolfe algorithm, which is a type of conditional gradient method, is used to solve the assignment problem. The next step is to consider both of the observed traffic counts on selected links and the deterministic user equilibrium assignments on the group of remaining links to produce the final traffic count estimates by the generalized least squares optimization procedure. The generalized least squares optimization is conducted under a set of relevant constraints, including the flow conservation condition for all highway intersections.
4

Theoretical Models for Blood Flow Regulation in Heterogeneous Microvascular Networks

Fry, Brendan January 2013 (has links)
Proper distribution of blood flow in the microcirculation is necessary to match changing oxygen demands in various tissues. How this coordination of perfusion and consumption occurs in heterogeneous microvascular networks remains incompletely understood. Theoretical models are powerful tools that can help bridge this knowledge gap by simulating a range of conditions difficult to obtain experimentally. Here, an algorithm is first developed to estimate blood flow rates in large microvascular networks. Then, a theoretical model is presented for metabolic blood flow regulation in a realistic heterogeneous network structure, derived from experimental results from hamster cremaster muscle in control and dilated states. The model is based on modulation of arteriolar diameters according to the length-tension characteristics of vascular smooth muscle. Responses of smooth muscle cell tone to myogenic, shear-dependent, and metabolic stimuli are included. Blood flow is simulated including unequal hematocrit partition at diverging vessel bifurcations. Convective and diffusive oxygen transport in the network is simulated, and oxygen-dependent metabolic signals are assumed to be conducted upstream from distal vessels to arterioles. Simulations are carried out over a range of tissue oxygen demand. With increasing demand, arterioles dilate, blood flow increases, and the numbers of flowing arterioles and capillaries, as defined by red-blood-cell flux above a small threshold value, increase. Unequal hematocrit partition at diverging bifurcations contributes to capillary recruitment and enhances tissue oxygenation. The results imply that microvessel recruitment can occur as a consequence of local control of arteriolar tone. The effectiveness of red-blood-cell-dependent and independent mechanisms for the metabolic response of local blood flow regulation is examined over a range of tissue oxygen demands. Model results suggest that although a red-blood-cell-independent mechanism is most effective in increasing flow and preventing hypoxia, the addition of a red-blood-cell-dependent mechanism leads to a higher median tissue oxygen level, indicating distinct roles for the two mechanisms. In summary, flow rates in large microvessel networks can be estimated with the proposed algorithm, and the theoretical model for flow regulation predicts a mechanism for capillary recruitment, as well as roles for red-blood-cell-dependent and independent mechanisms in the metabolic regulation of blood flow in heterogeneous microvascular networks.
5

Εκτίμηση οπτικής ροής χρησιμοποιώντας υπερδειγματοληπτημένες ακολουθίες βίντεο

Κατσένου, Αγγελική 21 May 2008 (has links)
Ένα σημαντικό πρόβλημα στην επεξεργασία ακολουθιών βίντεο είναι η εκτίμηση της κίνησης μεταξύ διαδοχικών πλαισίων βίντεο, που συχνά αναφέρεται και σαν εκτίμηση οπτικής ροής. Η εκτίμηση της κίνησης βρίσκει εφαρμογή σε μια πληθώρα εφαρμογών βίντεο, όπως για παράδειγμα στη συμπίεση (video compression), στην τρισδιάστατη εκτίμηση της δομής επιφανειών (3-D surface structure estimation), στη σύνθεση εικόνων υψηλής ανάλυσης (super-resolution) και στην κατάτμηση βάσει της κίνησης (motion-based segmentation). Οι πρόσφατες εξελίξεις στην τεχνολογία των αισθητήρων επιτρέπoυν τη λήψη πλαισίων βίντεο με υψηλούς ρυθμούς. Στη διεθνή βιβλιογραφία έχουν παρουσιασθεί τεχνικές που εκμεταλλεύονται την ακριβέστερη απεικόνιση της οπτικής ροής στην υπερδειγματοληπτημένη ακολουθία πλαισίων επιτυγχάνοντας με αυτόν τον τρόπο καλύτερη εκτίμηση της κίνησης στους τυπικούς ρυθμούς δειγματοληψίας των 30 πλαισίων/δευτ. Η υπολογιστική πολυπλοκότητα, και επομένως, και η χρησιμότητα των τεχνικών αυτών σε εφαρμογές πραγματικού χρόνου εξαρτώνται άμεσα από την πολυπλοκότητα του αλγορίθμου αντιστοίχισης, που χρησιμοποιείται για την εκτίμηση κίνησης. Στα πλαίσια της εργασίας αυτής θα μελετήθηκαν και υλοποιήθηκαν μερικές από τις πιο πρόσφατες τεχνικές που έχουν προταθεί στη διεθνή βιβλιογραφία και αναπτύχθηκε μια αποδοτικότερη (από άποψη πολυπλοκότητας) τεχνική αντιστοίχησης, η οποία όμως συγχρόνως δεν υστερεί σε ακρίβεια. / A significant problem in video processing is the motion estimation between two adjacent video frames, which is often called optical flow estimation. The motion estimation is applicable for a number of different fields of interest like video compression, 3-D surface structure estimation, super-resolution images and motion based segmentation. Recent evolution of sensors’ technology has allowed the capture of video frames at high rates. Several techniques using these video sequences have been presented in recent scientific and technological publications. These techniques are exploiting the better representation and achieve more accurate optical flow estimation at the standard frame rate (30 frames per second). The computational complexity and the ease-of-use of those techniques is in accordance with the complexity of the matching algorithm used for motion estimation. Some of the state-of-the-art algorithms have been studied and implemented during this diploma thesis. Besides this, a more efficient and accurate matching technique has been proposed.
6

Modeling and Estimation of Long Route EGR Mass Flow in a Turbocharged Gasoline Engine

Klasén, Erik January 2016 (has links)
Due to the continuous work in the automobile industry to reduce the environmental impact, reduce fuel consumption and increase efficiency, new technologies need to be developed and implemented in vehicles. For spark ignited engines, one technology that has received more attention in recent years is long route Exhaust Gas Recirculation (EGR), which means that exhaust gases after the turbine are transported back to the volume before the compressor in the air intake system of the engine. In this work, the components of the long route EGR system is modeled with mean value engine models in Simulink, and implemented in a existing Simulink engine model. Then different methods for estimating the mass flow over the long route EGR system are compared, and the transport delays for the recirculated exhaust gases in the engines air intake system are modeled. This work is based on measurements done on an engine rig, on which a long route EGR system was installed. Finally, some ideas on how a long route EGR system on a gasoline engine can be controlled are presented based on the results in this thesis work.
7

Zeros of the z-transform (ZZT) representation and chirp group delay processing for the analysis of source and filter characteristics of speech signals

Bozkurt, Baris 27 October 2005 (has links)
This study proposes a new spectral representation called the Zeros of Z-Transform (ZZT), which is an all-zero representation of the z-transform of the signal. In addition, new chirp group delay processing techniques are developed for analysis of resonances of a signal. The combination of the ZZT representation with the chirp group delay processing algorithms provides a useful domain to study resonance characteristics of source and filter components of speech. Using the two representations, effective algorithms are developed for: source-tract decomposition of speech, glottal flow parameter estimation, formant tracking and feature extraction for speech recognition. The ZZT representation is mainly important for theoretical studies. Studying the ZZT of a signal is essential to be able to develop effective chirp group delay processing methods. Therefore, first the ZZT representation of the source-filter model of speech is studied for providing a theoretical background. We confirm through ZZT representation that anti-causality of the glottal flow signal introduces mixed-phase characteristics in speech signals. The ZZT of windowed speech signals is also studied since windowing cannot be avoided in practical signal processing algorithms and the effect of windowing on ZZT representation is drastic. We show that separate patterns exist in ZZT representations of windowed speech signals for the glottal flow and the vocal tract contributions. A decomposition method for source-tract separation is developed based on these patterns in ZZT. We define chirp group delay as group delay calculated on a circle other than the unit circle in z-plane. The need to compute group delay on a circle other than the unit circle comes from the fact that group delay spectra are often very noisy and cannot be easily processed for formant tracking purposes (the reasons are explained through ZZT representation). In this thesis, we propose methods to avoid such problems by modifying the ZZT of a signal and further computing the chirp group delay spectrum. New algorithms based on processing of the chirp group delay spectrum are developed for formant tracking and feature estimation for speech recognition. The proposed algorithms are compared to state-of-the-art techniques. Equivalent or higher efficiency is obtained for all proposed algorithms. The theoretical parts of the thesis further discuss a mixed-phase model for speech and phase processing problems in detail.
8

Respiratory sound analysis for flow estimation during wakefulness and sleep, and its applications for sleep apnea detection and monitoring

Yadollahi, Azadeh 15 April 2011 (has links)
Tracheal respiratory sounds analysis has been investigated as a non-invasive method to estimate respiratory flow and upper airway obstruction. However, the flow-sound relationship is highly variable among subjects which makes it challenging to estimate flow in general applications. Therefore, a robust model for acoustical flow estimation in a large group of individuals did not exist before. On the other hand, a major application of acoustical flow estimation is to detect flow limitations in patients with obstructive sleep apnea (OSA) during sleep. However, previously the flow--sound relationship was only investigated during wakefulness among healthy individuals. Therefore, it was necessary to examine the flow-sound relationship during sleep in OSA patients. This thesis takes the above challenges and offers innovative solutions. First, a modified linear flow-sound model was proposed to estimate respiratory flow from tracheal sounds. To remove the individual based calibration process, the statistical correlation between the model parameters and anthropometric features of 93 healthy volunteers was investigated. The results show that gender, height and smoking are the most significant factors that affect the model parameters. Hence, a general acoustical flow estimation model was proposed for people with similar height and gender. Second, flow-sound relationship during sleep and wakefulness was studied among 13 OSA patients. The results show that during sleep and wakefulness, flow-sound relationship follows a power law, but with different parameters. Therefore, for acoustical flow estimation during sleep, the model parameters should be extracted from sleep data to have small errors. The results confirm reliability of the acoustical flow estimation for investigating flow variations during both sleep and wakefulness. Finally, a new method for sleep apnea detection and monitoring was developed, which only requires recording the tracheal sounds and the blood's oxygen saturation level (SaO2) data. It automatically classifies the sound segments into breath, snore and noise. A weighted average of features extracted from sound segments and SaO2 signal was used to detect apnea and hypopnea events. The performance of the proposed approach was evaluated on the data of 66 patients. The results show high correlation (0.96,p < 0.0001) between the outcomes of our system and those of the polysomnography. Also, sensitivity and specificity of the proposed method in differentiating simple snorers from OSA patients were found to be more than 91%. These results are superior or comparable with the existing commercialized sleep apnea portable monitors.
9

Respiratory sound analysis for flow estimation during wakefulness and sleep, and its applications for sleep apnea detection and monitoring

Yadollahi, Azadeh 15 April 2011 (has links)
Tracheal respiratory sounds analysis has been investigated as a non-invasive method to estimate respiratory flow and upper airway obstruction. However, the flow-sound relationship is highly variable among subjects which makes it challenging to estimate flow in general applications. Therefore, a robust model for acoustical flow estimation in a large group of individuals did not exist before. On the other hand, a major application of acoustical flow estimation is to detect flow limitations in patients with obstructive sleep apnea (OSA) during sleep. However, previously the flow--sound relationship was only investigated during wakefulness among healthy individuals. Therefore, it was necessary to examine the flow-sound relationship during sleep in OSA patients. This thesis takes the above challenges and offers innovative solutions. First, a modified linear flow-sound model was proposed to estimate respiratory flow from tracheal sounds. To remove the individual based calibration process, the statistical correlation between the model parameters and anthropometric features of 93 healthy volunteers was investigated. The results show that gender, height and smoking are the most significant factors that affect the model parameters. Hence, a general acoustical flow estimation model was proposed for people with similar height and gender. Second, flow-sound relationship during sleep and wakefulness was studied among 13 OSA patients. The results show that during sleep and wakefulness, flow-sound relationship follows a power law, but with different parameters. Therefore, for acoustical flow estimation during sleep, the model parameters should be extracted from sleep data to have small errors. The results confirm reliability of the acoustical flow estimation for investigating flow variations during both sleep and wakefulness. Finally, a new method for sleep apnea detection and monitoring was developed, which only requires recording the tracheal sounds and the blood's oxygen saturation level (SaO2) data. It automatically classifies the sound segments into breath, snore and noise. A weighted average of features extracted from sound segments and SaO2 signal was used to detect apnea and hypopnea events. The performance of the proposed approach was evaluated on the data of 66 patients. The results show high correlation (0.96,p < 0.0001) between the outcomes of our system and those of the polysomnography. Also, sensitivity and specificity of the proposed method in differentiating simple snorers from OSA patients were found to be more than 91%. These results are superior or comparable with the existing commercialized sleep apnea portable monitors.
10

Machine Learning-Based Data-Driven Traffic Flow Estimation from Mobile Data / Maskininlärningsbaserad datadriven uppskattning av trafikflöden från mobila data

Hsu, Pei-Lun January 2021 (has links)
Comprehensive information on traffic flow is essential for vehicular emission monitoring and traffic control. However, such information is not observable everywhere and anytime on the road because of high installation costs and malfunctions of stationary sensors. In order to compensate for stationary sensors’ weakness, this thesis analyses an approach for inferring traffic flows from mobile data provided by INRIX, a commercial crowd-sourced traffic dataset with wide spatial coverage and high quality. The idea is to develop Artificial Neural Network (ANN)-based models to automatically extract relations between traffic flow and INRIX measurements, e.g., speed and travel time, from historical data considering temporal and spatial dependencies. We conducted experiments using four weeks of data from INRIX and stationary sensors on two adjacent road segments on the E4 highway in Stockholm. Models are validated via traffic flow estimation based on one week of INRIX data. Compared with the traditional approach that fits the stationary flow-speed relationship based on the multi-regime model, the new approach greatly improves the estimation accuracy. Moreover, the results indicate that the new approach’s models have better resistance to the drift of input variables and can decrease the deterioration of estimation accuracy on the road segment without a stationary sensor. Hence, the new approach may be more appropriate for estimating traffic flows on the nearby road segments of a stationary sensor. The approach provides a highly automated means to build models adaptive to datasets and improves estimation and imputation accuracy. It can also easily integrate new data sources to improve the models. Therefore, it is very suitable to be applied to Intelligent Transport Systems (ITS) for traffic monitor and control in the context of the Internet of Things (IoT) and Big Data. / Information om trafikflödet är nödvändig för övervakning av fordonsutsläpp och trafikstyrning. Trafikflöden kan dock inte observeras överallt och när som helst på vägen på grund av höga installationskostnader och t.ex. funktionsstörningar hos stationära sensorer. För att kompensera för stationära sensorers svagheter analyseras i detta arbete ett tillvägagångssätt för att estimera trafikflöden från mobila data som tillhandahålls av INRIX. Detta kommersiella dataset innehåller restider som kommer från användare av bl.a. färdnavigatorer i fordon och som har en bred rumslig täckning och hög kvalitet. Idén är att utveckla modeller baserade på artificiellt neuronnät för att automatiskt extrahera samband mellan trafikflödesdata och restidsdata från INRIX-mätningarna baserat på historiska data och med hänsyn till tidsmässiga och rumsliga beroenden. Vi utförde experiment med fyra veckors data från INRIX och från stationära sensorer på två intilliggande vägsegment på E4:an i Stockholm. Modellerna valideras med hjälp av estimering av trafikflöde baserat på en veckas INRIX- data. Jämfört med det traditionella tillvägagångssättet som anpassar stationära samband mellan trafikflöde och hastighet baserat på fundamentaldiagram, förbättrar det nya tillvägagångssättet noggrannheten avsevärt. Dessutom visar resultaten att modellerna i den nya metoden bättre hanterar avvikelser i ingående variabler och kan öka noggrannheten på estimatet för vägsegmentet utan stationär sensor. Den nya metoden kan därför vara lämplig för att uppskatta trafikflöden på vägsegment närliggande en stationär sensor. Metodiken ger ett automatiserat sätt att bygga modeller som är anpassade till datamängderna och som förbättrar noggrannheten vid estimering av trafikflöden. Den kan också enkelt integrera nya datakällor. Metodiken är lämplig att tillämpa på tillämpningar inom intelligenta transportsystem för trafikövervakning och trafikstyrning.

Page generated in 0.1388 seconds