• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VATS : Voice-Activated Targeting System / VATS : Röstaktiverat Identifieringssystem

MELLO, SIMON January 2020 (has links)
Machine learning implementations in computer vision and speech recognition are wide and growing; both low- and high-level applications being required. This paper takes a look at the former and if basic implementations are good enough for real-world applications. To demonstrate this, a simple artificial neural network coded in Python and already existing libraries for Python are used to control a laser pointer via a servomotor and an Arduino, to create a voice-activated targeting system. The neural network trained on MNIST data consistently achieves an accuracy of 0.95 ± 0.01 when classifying MNIST test data, but also classifies captured images correctly if noise-levels are low. This also applies to the speech recognition, rarely giving wrong readings. The final prototype achieves success in all domains except turning the correctly classified images into targets that the Arduino can read and aim at, failing to merge the computer vision and speech recognition. / Maskininlärning är viktigt inom röstigenkänning och datorseende, för både små såväl som stora applikationer. Syftet med det här projektet är att titta på om enkla implementationer av maskininlärning duger för den verkligen världen. Ett enkelt artificiellt neuronnät kodat i Python, samt existerande programbibliotek för Python, används för att kontrollera en laserpekare via en servomotor och en Arduino, för att skapa ett röstaktiverat identifieringssystem. Neuronnätet tränat på MNIST data når en precision på 0.95 ± 0.01 när den försöker klassificera MNIST test data, men lyckas även klassificera inspelade bilder korrekt om störningen är låg. Detta gäller även för röstigenkänningen, då den sällan ger fel avläsningar. Den slutliga prototypen lyckas i alla domäner förutom att förvandla bilder som klassificerats korrekt till mål som Arduinon kan läsa av och sikta på, vilket betyder att prototypen inte lyckas sammanfoga röstigenkänningen och datorseendet.
2

Machine Learning-Based Data-Driven Traffic Flow Estimation from Mobile Data / Maskininlärningsbaserad datadriven uppskattning av trafikflöden från mobila data

Hsu, Pei-Lun January 2021 (has links)
Comprehensive information on traffic flow is essential for vehicular emission monitoring and traffic control. However, such information is not observable everywhere and anytime on the road because of high installation costs and malfunctions of stationary sensors. In order to compensate for stationary sensors’ weakness, this thesis analyses an approach for inferring traffic flows from mobile data provided by INRIX, a commercial crowd-sourced traffic dataset with wide spatial coverage and high quality. The idea is to develop Artificial Neural Network (ANN)-based models to automatically extract relations between traffic flow and INRIX measurements, e.g., speed and travel time, from historical data considering temporal and spatial dependencies. We conducted experiments using four weeks of data from INRIX and stationary sensors on two adjacent road segments on the E4 highway in Stockholm. Models are validated via traffic flow estimation based on one week of INRIX data. Compared with the traditional approach that fits the stationary flow-speed relationship based on the multi-regime model, the new approach greatly improves the estimation accuracy. Moreover, the results indicate that the new approach’s models have better resistance to the drift of input variables and can decrease the deterioration of estimation accuracy on the road segment without a stationary sensor. Hence, the new approach may be more appropriate for estimating traffic flows on the nearby road segments of a stationary sensor. The approach provides a highly automated means to build models adaptive to datasets and improves estimation and imputation accuracy. It can also easily integrate new data sources to improve the models. Therefore, it is very suitable to be applied to Intelligent Transport Systems (ITS) for traffic monitor and control in the context of the Internet of Things (IoT) and Big Data. / Information om trafikflödet är nödvändig för övervakning av fordonsutsläpp och trafikstyrning. Trafikflöden kan dock inte observeras överallt och när som helst på vägen på grund av höga installationskostnader och t.ex. funktionsstörningar hos stationära sensorer. För att kompensera för stationära sensorers svagheter analyseras i detta arbete ett tillvägagångssätt för att estimera trafikflöden från mobila data som tillhandahålls av INRIX. Detta kommersiella dataset innehåller restider som kommer från användare av bl.a. färdnavigatorer i fordon och som har en bred rumslig täckning och hög kvalitet. Idén är att utveckla modeller baserade på artificiellt neuronnät för att automatiskt extrahera samband mellan trafikflödesdata och restidsdata från INRIX-mätningarna baserat på historiska data och med hänsyn till tidsmässiga och rumsliga beroenden. Vi utförde experiment med fyra veckors data från INRIX och från stationära sensorer på två intilliggande vägsegment på E4:an i Stockholm. Modellerna valideras med hjälp av estimering av trafikflöde baserat på en veckas INRIX- data. Jämfört med det traditionella tillvägagångssättet som anpassar stationära samband mellan trafikflöde och hastighet baserat på fundamentaldiagram, förbättrar det nya tillvägagångssättet noggrannheten avsevärt. Dessutom visar resultaten att modellerna i den nya metoden bättre hanterar avvikelser i ingående variabler och kan öka noggrannheten på estimatet för vägsegmentet utan stationär sensor. Den nya metoden kan därför vara lämplig för att uppskatta trafikflöden på vägsegment närliggande en stationär sensor. Metodiken ger ett automatiserat sätt att bygga modeller som är anpassade till datamängderna och som förbättrar noggrannheten vid estimering av trafikflöden. Den kan också enkelt integrera nya datakällor. Metodiken är lämplig att tillämpa på tillämpningar inom intelligenta transportsystem för trafikövervakning och trafikstyrning.
3

Categorisation of the Emotional Tone of Music using Neural Networks

Hedén Malm, Jacob, Sinclair, Kyle January 2020 (has links)
Machine categorisation of the emotional content of music is an ongoing research area. Feature description and extraction for such a vague and subjective field as emotion presents a difficulty for human-designed audioprocessing. Research into machine categorisation of music based on genrehas expanded as media companies have increased their recommendation and automation efforts, but work into categorising music based on sentiment remains lacking. We took an informed experimental method towards finding a workable solution for a multimedia company, Ichigoichie, who wished to develop a generalizable classifier on musical qualities. This consisted of first orienting ourselves within the academic literature relevant on the subject, which suggested applying spectrographic pre-processing to the sound samples, and then analyzing these visually with a convolutional neural network. To verify this method, we prototyped the model in a high level framework utilizing Python which pre-processes 10 second audio files into spectrographs and then provides these as learning data to a convolutional neural network. This network is assessed on both its categorization accuracy and its generalizability to other data sets. Our results show that the method is justifiable as a technique for providing machine categorization of music based on genre, and even provides evidence that such a method is technically feasible for commercial applications today. / Maskinkategorisering av känsloprofilen i musik är ett pågående forskningsområde. Traditionellt sett görs detta med algoritmer som är skräddarsydda för en visstyp av musik och kategoriseringsområde. En nackdel med detta är att det inte går att applicera sådana algoritmer på flera användningsområden, och att det krävs både god musikkunnighet och även tekniskt vetande för att lyckas utveckla sådana algoritmer. På grund av dessa anledningar ökar stadigt mängden av forskning runt huruvida samma ändamål går att åstadkommas med hjälp av maskininlärningstekniker, och speciellt artificiella neuronnät, en delgrupp av maskininlärning. I detta forskningsprojekt ämnade vi att fortsätta med detta forskningsområde,och i slutändan hoppas kunna besvara frågan om huruvida det går att klassificera och kategorisera musik utifrån känsloprofilen inom musiken, med hjälp av artificiella neuronnät. Vi fann genom experimentell forskning att artificiella neuronnät är en mycket lovande teknik för klassificering av musik, och uppnådde goda resultat. Metoden som användes bestådde av spektrografisk ljudprocessering, och sedan analys av dessa spektrogram med konvolutionella neuronnät, en sorts artificiella neuronnät ämnade för visuell analys.
4

A machine learning approach leveraging technical- and sentiment analysis to forecast price movements in major crypto currencies / Förutsägelse av kryptovalutors pristrender med attityddata samt teknisk analys inom maskininlärning

Harting, Ludvig, Åkesson, Nils January 2022 (has links)
This paper uses a back-propagating neural network (BPN) to predict the price movements of major crypto currencies, leveraging technical factors as well as measurements of collective sentiment derived from the micro-blogging network Twitter. Our dataset consists of daily, hourly and minutely price levels for Bitcoin, Ether and Litecoin along with 8 popular technical indicators, as well as all tweets with the currencies' cash tags during respective time periods. Insprired by previous research which suggest that artificial neural networks are superior forecasting models in this setting, we were able to create a system generating automated investment decisions on a daily, hourly and minutely time basis. The study concluded that price trends are indeed predictable, with a correct prediction rate above 50% for all models, and corrensponding profitable trading strategies for all currencies on an hourly basis when neglecting trading fees, buy-sell spreads and order delays. The overall highest predictability is obtained on the hourly trading interval for Bitcoin, yielding an accuracy of 55.74% and a cumulative return of 175.1% between October 16, 2021 and December 31, 2021. / I denna studie används ett bakåtpropagerande neoronnät (BPN) för att förutsäga prisrörelser i större kryptovalutor med hjälp av tekniska faktorer och kvantifiering av kollektivt sentimentet från mikrobloggnätverket Twitter. Vårt dataset består av dagliga, timvisa och minutvisa prisnivåer för Bitcoin, Ether och Litecoin tillsammans med 8 populära tekniska indikatorer, samt alla tweets med valutornas "cash tags" under respektive tidsperiod. Med inspiration från tidigare forskning som hävdar att artificiella nauronnät är överlägsna prognosmodeller i denna typ av analys kunde vi skapa ett system som genererar automatiska investeringsbeslut på daglig, timvis och minutvis basis. Vi hävdar med denna studie att pristrender är förutsägbara för dessa kryptovalutor, med en korrekt förutsägelsefrekvens på över 50% för alla modeller, och med lönsamma handelsstrategier för alla valutor på timbasis när man bortser från handelsavgifter, köp- och säljspreadar och orderfördröjningar. Den högsta förutsägbarheten erhålls på timhandelsintervallet för Bitcoin, vilket ger en nogrannhet på 55,74% och en ackumulerad avkastning på 175,1% mellan den 16 oktober 2021 och den 31 december 2021.

Page generated in 0.0793 seconds