• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 55
  • 26
  • 15
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 254
  • 110
  • 45
  • 34
  • 30
  • 29
  • 29
  • 27
  • 26
  • 25
  • 23
  • 22
  • 21
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

SIMPLE AND RAPID ASSAY METHOD FOR SIMULTANEOUS QUANTIFICATION OF URINARY NICOTINE AND COTININE USING MICRO-EXTRACTION BY PACKED SORBENT AND GAS CHROMATOGRAPHY-MASS SPECTROMETRY

Seno, Hiroshi, Suzuki, Osamu, Ishii, Akira, Zaitsu, Kei, Hattori, Hideki, Ogawa, Tadashi, Iwai, Masae 08 1900 (has links)
No description available.
92

Kinetics of anaerobic sulphate reduction in immobilised cell bioreactors

Baskaran, Vikrama Krishnan 08 November 2005 (has links)
Many industrial activities discharge sulphate- and metal-containing wastewaters, including the manufacture of pulp and paper, mining and mineral processing, and petrochemical industries. Acid mine drainage (AMD) is an example of such sulphate- and metal-containing waste streams. Formation of AMD is generally the result of uncontrolled oxidation of the sulphide minerals present in the terrain in which the drainage flows with concomitant leaching of the metals. Acid mine drainage (AMD) and other sulphate- and metal-containing waste streams are amenable to active biological treatment. Anaerobic reduction of sulphate, reaction of produced sulphide with metal ions present in the waste stream, and biooxidation of excess sulphide are three main sub-processes involved in the active biotreatment of AMD. Anaerobic reduction of sulphate can be achieved in continuous stirred tank bioreactors with freely suspended cells or in immobilized cell bioreactors. The application of freely suspended cells in a continuous system dictates a high residence time to prevent cell wash-out, unless a biomass recycle stream is used. In an immobilized cell system biomass residence time becomes uncoupled from the hydraulic residence time, thus operation of bioreactor at shorter residence times becomes possible. In the present work, kinetics of anaerobic sulphate reduction was studied in continuous immobilized cell packed-bed bioreactors. Effects of carrier matrix, concentration of sulphate in the feed and sulphate volumetric loading rate on the performance of the bioreactor were investigated. The bioreactor performance, in terms of sulphate reduction rate, was dependent on the nature of the carrier matrix, specifically the total surface area which was provided by the matrix for the establishment of biofilm. Among the three tested carrier matrices, sand displayed the superior performance and the maximum volumetric reduction rate of 1.7 g/L-h was achieved at the shortest residence time of 0.5 h. This volumetric reduction rate was 40 and 8 folds faster than the volumetric reduction rates obtained with glass beads (0.04 g/L-h; residence time: 28.6 h) and foam BSP (0.2 g/L-h; residence time: 5.3 h), respectively. Further kinetic studies with sand as a carrier matrix indicated that the extent of volumetric reduction rate was dependent on the feed sulphate concentration and volumetric loading rate. At a constant feed sulphate concentration, increases in volumetric loading rate caused the volumetric reduction rate to pass through a maximum, while increases in feed sulphate concentrations from 1.0 g/L to 5.0 g/L led to lower volumetric reduction rates. The maximum volumetric reduction rates achieved in the bioreactors fed with initial sulphate concentration of 1.0, 2.5 and 5.0 g/L were 1.71, 0.82 and 0.68 g/L-h, respectively. The coupling of lactate utilization to sulphate reduction was observed in all experimental runs and the rates calculated based on the experimental data were in close agreement with calculated theoretical rates, using the stoichiometry of the reactions involved. The maximum volumetric reduction rates achieved in the immobilized cell bioreactors were significantly faster than those reported for freely suspended cells employed in the stirred tank bioreactors.
93

Bioremediation of industrial VOC air pollutants

Nikakhtari, Hossein 03 April 2006 (has links)
An External Loop Airlift Bioreactor with a small amount (99% porosity) of stainless steel mesh packing inserted in the riser section was used for bioremediation of a phenol polluted air stream. The packing enhanced VOC and oxygen mass transfer rates and provided a large surface area for cell immobilization. Using a pure strain of Pseudomonas putida, fed-batch and continuous runs at three different dilution rates were completed with phenol in the polluted air as the only source of growth substrate. 100% phenol removal was achieved at phenol loading rates up to 33120 mg/h.m3 using only one third of the column, superior to any previously reported biodegradation rates of phenol polluted air with 100% efficiency. A mathematical model has been developed and is shown to accurately predict the transient and steady state data.
94

Control And Simulation Studies For A Multicomponent Batch Packed Distillation Column

Ceylan, Hatice 01 August 2007 (has links) (PDF)
During the last decades, batch distillation is preferably used with an increasing demand over continuous one, to separate fine chemicals in chemical and petroleum industries, due to its advantages like, flexibility and high product purity. Consequently, packed distillation columns, with newly generated packing materials, are advantageous compared to plate columns because of their smaller holdups, resistivity to corrosive materials and their higher separation efficiencies. Also, in many industrial applications, mathematical models of distillation systems are frequently used in order to design effective control systems, to train operating personnel and to handle fault diagnostics. Thus, the main objective of this study is to develop a mathematical model for a multicomponent batch distillation column, which is used to separate mixtures at low operating pressures, packed with random packing materials. In multicomponent batch packed distillation, operation with optimum reflux ratio profile is important for efficiency to maximize the amount of the distillate with a specified concentration, for a given time. Therefore, it is also aimed to find the optimum reflux ratio profile for the multicomponent batch packed distillation column. A simulation algorithm is written with the aid of MATLAB and FORTRAN programming languages by taking into account pressure drop and variation of physical properties. The selected incremental bed height, &amp / #916 / z, to be used in the simulation program has an effect on the accuracy of the results. This is analyzed and the optimal incremental height is found to be 3.5 cm for a 1.5m bed height. The change in distillate compositions with a given constant reflux ratio is found to be similar with those of previous studies. The simulation code is also used to obtain responses in distillate compositions for different reflux ratios, condenser holdups and reboiler duties and compared with similar studies found from literature and found to be adequate. Finally, experiments are conducted to verify simulation algorithm by using a lab-scale packed distillation column for the separation of a polar mixture of ethanol and water. It is observed that, there is a good agreement between the experimental and simulation results. After the verification of dynamic model, optimum operation policy to maximize product amount is investigated numerically by using capacity factor approach. The column is operated with and without recycling of the holdups of the slop cut tanks, in order to examine the effect of recycling on capacity factor, CAP. It is observed that, recycling of the molar holdups of the slop cut tanks is resulted in a 28% increase in the separation efficiency.
95

Experimental Investigation of Encapsulated Phase Change Materials for Thermal Energy Storage

Alam, Tanvir E 01 January 2015 (has links)
Thermal energy storage (TES) is one of the most attractive and cost effective solutions to the intermittent generation systems like solar, wind and other renewable sources, compared to alternatives. It creates a bridge between the power supply and demand during peak hours or at times of emergency to ensure the continuous supply of energy. Among all the TES systems, latent heat thermal energy storage (LHTES) draws lots of interests as it has high energy density and can store or retrieve energy isothermally. Two major technical challenges associated with the LHTES are low thermal conductivity of the phase change materials (PCMs), and corrosion tendency of the containment vessel with the PCMs. Macro-encapsulation of the PCM is one of the techniques to encounter the low thermal conductivity issue as it will maximize the heat transfer area for the given volume of the PCM and restrict the PCMs to get in contact with the containment vessel. However, finding a suitable encapsulation technique that can address the volumetric expansion problem and compatible shell material are significant barriers of this approach. In the present work, an innovative technique to encapsulate PCMs that melt in the 100-350 oC temperature range was developed for industrial and private applications. This technique did not require a sacrificial layer to accommodate the volumetric expansion of the PCMs on melting. The encapsulation consisted of coating a non-reactive polymer over the PCM pellet followed by deposition of a metal layer by a novel non-vacuum metal deposition technique. The fabricated spherical capsules were tested in different heat transfer fluid (HTF) environments like air, oil and molten salt (solar salt). Thermophysical properties of the PCMs were investigated by DSC/TGA, IR and weight change analysis before and after the thermal cycling. Also, the constrained melting and solidification of sodium nitrate PCM inside the spherical capsules of different sizes were compared to explore the charging and discharging time. To accomplish this, three thermocouples were installed vertically inside the capsule at three equidistant positions. Low-density graphene was dispersed in the PCM to increase its conductivity and compared with pure PCM capsules. A laboratory scale packed-bed LHTES system was designed and built to investigate the performance of the capsules. Sodium nitrate (m.p. 306oC) was used as the PCM and air was used as the heat transfer fluid (HTF). The storage system was operated between 286oC and 326oC and the volumetric flow rate of the HTF was varied from 110 m3/h to 151 m3/h. The temperature distribution along the bed (radially and axially) and inside the capsules was monitored continuously during charging and discharging of the system. The effect of the HTF mass flow rate on the charging and discharging time and on the pressure drop across the bed was evaluated. Also, the energy and exergy efficiencies were calculated for three different flow rates. Finally, a step-by-step trial manufacturing process was proposed to produce large number of spherical capsules.
96

Characterization of Thermo-Fluid Transport Properties of Coated and Uncoated Open-Cell Metal Foam Monoliths

THOMAS, EDWARD ANTHONY 13 December 2011 (has links)
An improved steady-state method combining experiment and mathematical modelling has been developed to characterize the scalable convective heat transfer coefficient, hvol [W*m^(-3)*K^(-1)], of uncoated and catalyst-support coated aluminium foam monoliths. The values of hvol were recovered by parameter fitting its model values to experimental temperature data for steady-state air-cooled monoliths under a known heating flux. The model was built with experimentally recovered values of the monolith’s thermal conductivity and fluid permeability along with known values for other physical parameters. The volumetric heat transfer coefficients of 10, 20 and 40 pore-per-inch uncoated aluminium foams were determined to range between 2,700 and 20,000 W*m^(-3)*K^(-1) at channel Reynolds numbers between 85 and 1,700. The presence of a 76 micron thick anodized layer of catalyst support on monolith foams effected a small but significant reduction in the value of hvol. Coating with an anodized layer also reduced the permeabilities of the monoliths to air flow by 4-20%. Knowledge of the scalable parameter, hvol, was used to model a steady-state non-isothermal, non-isobaric heat-coupled methanol reformer. The model shows that changes to the convective transfer coefficient due to coating the monolith with catalyst support may have significant consequences for the thermal profile of the model reactor and for the product yield. / Thesis (Master, Chemical Engineering) -- Queen's University, 2011-12-12 20:11:18.046
97

MULTI-SCALE MODELING AND EXPERIMENTAL STUDY OF DEFORMATION TWINNING IN HEXAGONAL CLOSE-PACKED MATERIALS

Abdolvand, Hamidreza 23 April 2012 (has links)
Zirconium and its alloys have been extensively used in both heavy and light water nuclear reactors. Like other Hexagonal Close-Packed (HCP) materials, e.g. magnesium, zirconium alloys develop different textures during manufacturing process which result in highly anisotropic materials with different responses under different loading conditions. Slip and twinning are two major deformation mechanisms during plastic deformation of zirconium. This dissertation uses various experimental techniques and a crystal plasticity scheme in the finite element framework to study deformation mechanisms in HCP materials with an emphasis on twinning in Zircaloy-2. The current study is presented as a manuscript format dissertation comprised of four manuscript chapters. After a literature review in Chapter 2, Chapter 3 reports steps in developing a crystal plasticity finite element user material subroutine for modeling deformation in Zircaloy-2 at room temperature. It is shown in Chapter 3 that the developed rate dependent equations are capable of capturing evolution of key features, e.g., texture, lattice strains, and twin volume fractions, during deformation by twinning and slip. Chapter 4 reports various assumptions and approaches in modeling twinning where results are compared against neutron diffraction measurements from the literature. It is shown in Chapter 4 that the predominant twin reorientation scheme can explain texture development more precisely than the other schemes discussed. Chapter 5 and 6 are two connected chapters where in the first one the formation of twins is studied statistically and in the second one, local inception and propagation of twins is studied. Numerical results of these two chapters are compared with 2D electron backscattered diffraction measurements, both carried out by the author and from the literature. Results from these two connected chapters emphasize the important role of grain boundary geometry and stress concentration sites on twin nucleation and growth. The four manuscript chapters are followed by summarizing conclusions and suggestions for future work in Chapter 7. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2012-04-23 11:50:33.751
98

Towards more selective sorbents for extraction of drugs and biomarkers from biological fluids using molecularly imprinted polymers

Moein, Mohammad Mahdi January 2014 (has links)
Sample preparation has a critical role as a first step in analytical processes, especially in bioanalysis and environmental analysis. A good sample preparation technique should be robust and stable, regardless of the sample matrix. The aim of this thesis is to design and synthesize molecularly imprinted polymers that can be used in various sample preparation techniques, such as on-line MEPS, on-line SPE and on-line monolithic pre-columns used for the extraction of drugs, hormones, and cancer biomarkers from human plasma and urine samples. Additional aim was to provide full automation, on-line coupling, short sample preparation time and high-throughput. In this thesis MIP in MEPS was used on-line with liquid chromatography-tandem mass spectrometry (LC/MS/MS) for the determination of sarcosine in human urine and plasma samples. The method was fully automated and the packed sorbent could be used for about hundred extractions. In additional work a coated needle with MIP-Sol-Gel as thin layer was prepared and used for the microextraction of bilirubin from human plasma and urine. Small sample volumes could be handled and the validation of the method showed that the method was robust and selective. In a further work MIP-SPE on-line with HPLC was used for the extraction and determination of dextromethorphan in human plasma samples. MIP-SPE showed a good selectivity and high recovery (87% - 92%). On-line MIP monolithic pre-column was prepared and used in a coupled system for the extraction of tramadol in human plasma and urine samples. The MIP monolithic pre-column showed good selectivity and high extraction recovery was obtained (91-96%). The extraction and analysis of human insulin in plasma and pharmaceutical formulation solutions were carried out using MIP-SPE on-line with HPLC. The validation of the method showed that the method was accurate and robust. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Submitted.</p>
99

Investigation into the velocity distribution through an annular packed bed / Hendrik Jacobus Reyneke

Reyneke, Hendrik Jacobus January 2009 (has links)
The purpose of this study was to investigate the velocity distribution through an annular bed packed randomly with equal sized spheres. Extensive research has been conducted on the velocity distribution inside packed beds packed with equal sized spheres, different sized spheres, deformed spheres, cylinders and Raschig-rings. A majority of these experimental and numerical studies focused on the cylindrical packed bed. These studies and numerical models are all confined to the velocity profile once the fluid flow is fully developed. The development of the velocity through the inlet region of the bed and the fluid flow redistribution in the outlet of the bed is thus neglected. The experimental investigation into the velocity distribution down stream of the annular packed bed of the HTTU indicated that the velocity profile was independent of the mass flow rate for a particle Reynolds number range of 439 £ Re £ 3453 . These velocity profiles did not represent the distribution of the axial velocity due to shortcomings associated with the single sensor hot wire anemometry system used to measure the velocity distribution. A numerical investigation, using the RANS CFD code STAR-CCM+®, into the velocity distribution downstream of an explicitly modelled bed of spheres indicated that the axial velocity distribution could be extracted from the experimental velocity profiles by using an adjustment factor of 0.801. This adjusted velocity profile was used in the verification of the implicit bed simulation model. The implicit bed simulation model was developed in STAR-CCM+®. The resistance of the spheres was modelled using the KTA (1981) pressure drop correlation and the structure of the bed was modelled using the porosity correlation proposed by Martin (1978), while the effective viscosity model of Giese et al. (1998), adjusted by a factor of 0.8, was used to model the velocity distribution in the near wall region. It was found that the structure in the inlet region of the bed, where two walls disturb the packing structure, can be modelled as the weighted average of the radial and axial porosity while the structure in the outlet regions can be modelled by letting the radial porosity increase linearly to unity. The basic shape of the velocity profile is established immediately when the fluid enters the bed. The amplitude of the velocity peaks however increase in magnitude until the velocity profile is fully developed at a distance approximately of five sphere diameters from the bed inlet. The profile remains constant throughout the bed until the outlet region of the bed is reached. In the outlet region a significant amount of fluid redistribution is observed. The amplitude of the velocity peaks is reduced and the position of the velocity peaks is shifted inwards towards the centre of the annular region. The fully developed velocity profile, predicted by the simulation model is in good agreement with profiles presented by amongst others Giese et al. (1998). The current model however also offers insight into the development of the profile through the inlet of the bed and the fluid redistribution, which occurs in the outlet region of the bed. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
100

Investigation into the velocity distribution through an annular packed bed / Hendrik Jacobus Reyneke

Reyneke, Hendrik Jacobus January 2009 (has links)
The purpose of this study was to investigate the velocity distribution through an annular bed packed randomly with equal sized spheres. Extensive research has been conducted on the velocity distribution inside packed beds packed with equal sized spheres, different sized spheres, deformed spheres, cylinders and Raschig-rings. A majority of these experimental and numerical studies focused on the cylindrical packed bed. These studies and numerical models are all confined to the velocity profile once the fluid flow is fully developed. The development of the velocity through the inlet region of the bed and the fluid flow redistribution in the outlet of the bed is thus neglected. The experimental investigation into the velocity distribution down stream of the annular packed bed of the HTTU indicated that the velocity profile was independent of the mass flow rate for a particle Reynolds number range of 439 £ Re £ 3453 . These velocity profiles did not represent the distribution of the axial velocity due to shortcomings associated with the single sensor hot wire anemometry system used to measure the velocity distribution. A numerical investigation, using the RANS CFD code STAR-CCM+®, into the velocity distribution downstream of an explicitly modelled bed of spheres indicated that the axial velocity distribution could be extracted from the experimental velocity profiles by using an adjustment factor of 0.801. This adjusted velocity profile was used in the verification of the implicit bed simulation model. The implicit bed simulation model was developed in STAR-CCM+®. The resistance of the spheres was modelled using the KTA (1981) pressure drop correlation and the structure of the bed was modelled using the porosity correlation proposed by Martin (1978), while the effective viscosity model of Giese et al. (1998), adjusted by a factor of 0.8, was used to model the velocity distribution in the near wall region. It was found that the structure in the inlet region of the bed, where two walls disturb the packing structure, can be modelled as the weighted average of the radial and axial porosity while the structure in the outlet regions can be modelled by letting the radial porosity increase linearly to unity. The basic shape of the velocity profile is established immediately when the fluid enters the bed. The amplitude of the velocity peaks however increase in magnitude until the velocity profile is fully developed at a distance approximately of five sphere diameters from the bed inlet. The profile remains constant throughout the bed until the outlet region of the bed is reached. In the outlet region a significant amount of fluid redistribution is observed. The amplitude of the velocity peaks is reduced and the position of the velocity peaks is shifted inwards towards the centre of the annular region. The fully developed velocity profile, predicted by the simulation model is in good agreement with profiles presented by amongst others Giese et al. (1998). The current model however also offers insight into the development of the profile through the inlet of the bed and the fluid redistribution, which occurs in the outlet region of the bed. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.

Page generated in 0.0403 seconds