1 |
Cluster compounds of palladium and platinumBurrows, Andrew David January 1991 (has links)
No description available.
|
2 |
Transfert ultrarapide d’électron et transfert modéré d’énergie au sein d’assemblages supramoléculaires de colorants et d’un cluster de palladium / Ultrafast electron and moderate energy transfers within supramolecular assemblies of dyes and a palladium clusterLuo, Peng January 2016 (has links)
Résumé : Les transferts d’électrons photo-induits et d’énergie jouent un rôle primordial dans un grand nombre de processus photochimiques et photobiologiques, comme la respiration ou la photosynthèse. Une très grande quantité de systèmes à liaisons covalentes ont été conçus pour copier ces processus de transferts. Cependant, les progrès sont, en grande partie, limités par les difficultés rencontrées dans la synthèse de nouveaux couples de types donneurs-accepteurs. Récemment, des espèces utilisant des liaisons non-covalentes, comme les liaisons hydrogènes, les interactions [pi]-[pi], les liaisons de coordination métal-ligands ou encore les interactions électrostatiques sont le centre d’un nouvel intérêt du fait qu’ils soient plus faciles à synthétiser et à gérer pour obtenir des comportements de transferts d’électrons ou d’énergie plus flexibles et sélectifs. C’est dans cette optique que le travail de cette thèse a été mené, i.e. de concevoir des composés auto-assemblés avec des porphyrines et un cluster de palladium pour l’étude des transferts d’électrons photo-induits et d’énergie. Cette thèse se divise en quatre parties principales. Dans la première section, le chapitre 3, deux colorants porphyriniques, soit le 5-(4-carboxylphényl)-10, 15, 20-tristolyl(porphyrinato)zinc(II) (MCP, avec Na+ comme contre-ion) et 5, 15-bis(4-carboxylphényl)-15, 20-bistolyl(porphyrinato)zinc(II) (DCP, avec Na+ comme contre-ion) ont été utilisés comme donneurs d’électrons, et le [Pd3(dppm)3(CO)]2+ ([Pd32+], dppm = (Ph2P)2CH2, PF6‾ est le contre-ion) a été choisi comme accepteur d’électrons. La structure de l’assemblage [Pd32+]•••porphyrine a été élucidée par l’optimisation des géométries à l’aide de calculs DFT. La spectroscopie d’absorption transitoire (TAS) montre la vitesse de transferts d’électrons la plus rapide (< 85 fs, temps inférieurs à la limite de détection) jamais enregistrée pour ce type de système (porphyrine-accepteur auto-assemblés). Généralement, ces processus sont de l’ordre de l’échelle de la ps-ns. Cette vitesse est comparable aux plus rapides transferts d’électrons rapportés dans le cas de systèmes covalents de type porphyrine-accepteur rapide (< 85 fs, temps inférieurs à la limite de détection). Ce transfert d’électrons ultra-rapide (ket > 1.2 × 1013 s-1) se produit à l’état énergétique S1 des colorants dans une structure liée directement par des interactions ioniques, ce qui indique qu’il n’est pas nécessaire d’avoir de forts liens ou une géométrie courbée entre le donneur et l’accepteur. Dans une deuxième section, au chapitre 4, nous avons étudié en profondeur l’effet de l’utilisation de porphyrines à systèmes π-étendus sur le comportement des transferts d’électrons. Le colorant 9, 18, 27, 36-tétrakis-meso-(4-carboxyphényl)tétrabenzoporphyrinatozinc(II) (TCPBP, avec Na+ comme contre-ion) a été sélectionné comme candidat, et le 5, 10, 15, 20-tétrakis-meso-(4-carboxyphényl)porphyrineatozinc(II) (TCPP, avec Na+ comme contre-ion) a aussi été utilisé à des fins de comparaisons. TCPBP et TCPP ont, tous deux, été utilisés comme donneurs d’électrons pour fabriquer des assemblages supramoléculaires avec le cluster [Pd32+] comme accepteur d’électrons. Les calculs DFT ont été réalisés pour expliquer les structures de ces assemblages. Dans les conditions expérimentales, ces assemblages sont composés principalement d’une porphyrine avec 4 équivalents de clusters. Ces systèmes ont aussi été investigués par des mesures de quenching (perte de luminescence), par électrochimie et par d’autres techniques. Les transferts d’électrons (< 85 fs; temps inférieurs à la limite de détection) étaient aussi observés, de façon similaire aux assemblages MCP•••[Pd32+] et [Pd32+]•••DCP•••[Pd32+]. Les résultats nous indiquent que la modification de la structure de la porphyrine vers la tétrabenzoporphyrine ne semble pas influencer le comportement des cinétiques de transferts d’électrons (aller ou retour). Dans la troisième section, le chapitre 5, nous avons synthétisé la porphyrine hautement [pi]-conjuguée: 9, 18, 27, 36-tétra-(4-carboxyphényléthynyl)tétrabenzoporphyrinatozinc(II) (TCPEBP, avec Na+ comme contre-ion) par des fonctionnalisations en positions meso- et β, β-, qui présente un déplacement vers le rouge de la bande de Soret et des bandes Q. TCPEBP était utilisé comme donneur d’électrons pour fabriquer des motifs supramoléculaires avec le [Pd32+] comme accepteur d’électrons. Des expériences en parallèle ont été menées en utilisant la 5, 10, 15, 20-tétra-(4-carboxyphényl)éthynylporphyrinatozinc(II) (TCPEP, avec Na+ comme contre-ion). Des calculs DFT et TDDFT ont été réalisés pour de nouveau déterminer de façon théorique les structures de ces systèmes. Les constantes d’association pour les assemblages TCPEBP•••[Pd32+]x sont les plus élevées parmi tous les assemblages entre des porphyrines et le cluster de palladium rencontrés dans la littérature. La TAS a montré, encore une fois, des processus de transferts d’électrons dans des échelles de l’ordre de 75-110 fs. Cependant, les transferts de retour d’électrons sont aussi très rapides (< 1 ps), ce qui est un obstacle potentiel pour des applications en cellules solaires à pigment photosensible (DSSCs). Dans la quatrième section, le chapitre 6, les transferts d’énergie triplets (TET) ont été étudiés pour les assemblages MCP•••[Pd32+] et [Pd32+]•••DCP•••[Pd32+]. Les analyses spectrales des états transitoires dans l’échelle de temps de la ns-[mu]s démontrent de façon évidente les TETs; ceux-ci présentent des transferts d’énergie lents et/ou des vitesses moyennes pour des transferts d’énergie T1-T1 (3dye*•••[Pd32+] → dye•••3[Pd32+]*) opérant à travers exclusivement le mécanisme de Förster avec des valeurs de kET autour de ~ 1 × 105 s-1 selon les mesures d’absorption transitoires à 298 K. Des forces motrices non-favorables rendent ces types de processus non-opérants ou très lents dans les états T1. L’état T1 de [Pd32+] (~8190 cm-1) a été qualitativement déterminé par DFT et par la mise en évidence de l’émission S0 ← Tn retardée à 680-700 nm provenant de l’annihilation T1-T1, ce qui fait que ce cluster peut potentiellement agir comme un donneur à partir de ses états Tn, et accepteur à partir de T1 à l’intérieur de ces assemblages. Des pertes d’intensités de types statiques pour la phosphorescence dans le proche-IR sont observées à 785 nm. Ce travail démontre une efficacité modérée des colorants à base de porphyrines pour être impliquée dans des TETs avec des fragments organométalliques, et ce, même attachées grâce à des interactions ioniques. En conclusion, les assemblages ioniques à base de porphyrines et de clusters de palladium présentent des propriétés de transferts d’électrons S1 ultra-rapides, et des transferts d’énergie T1 de vitesses modérées, ce qui est utile pour de possibles applications comme outils optoélectroniques. D’autres études, plus en profondeur, sont présentement en progrès. / Abstract : Photoinduced electron and energy transfers play the pivotal role in various photochemical and photobiological redox processes including photosynthesis and respiration. Abundant covalently bonded systems have been designed to mimic the natural electron and energy transfer processes. However, the progress is often interfered by the difficulties to synthesize novel and versatile covalent donor-acceptor pairs. Recently, entities utilizing non-covalent interactions including hydrogen-bonding, [pi]-[pi] stacking, metal-ligand coordination and electrostatic interactions are becoming a hot topic since they are easy to be fabricated and tuned for selective and flexible electron and energy transfer behaviors. In this respect, the work presented in this thesis designed self-assemblies with porphyrins and a palladium cluster for photoinduced electron and energy transfers. It includes four main sections. In the first section, Chapter 3, two porphyrinic dyes, 5-(4-carboxylphenyl)-10, 15, 20-tristolyl(porphyrinato)zinc(II) (MCP, as sodium salt) and 5, 15-bis(4-carboxylphenyl)-15, 20-bistolyl(porphyrinato)zinc(II) (DCP, as sodium salt), were used as electron donors, and [Pd3(dppm)3(CO)]2+ ([Pd32+], dppm = (Ph2P)2CH2, as PF6‾ salt) cluster was adopted as the electron acceptor. The structure of [Pd32+]•••porphyrin assemblies was elucidated by geometry optimization using Density Functional Theory (DFT) calculations. Transient absorption spectroscopy (TAS) indicated a record fast electron transfer rate (< 85 fs, the time resolution limit) among the porphyrin-acceptor self-assemblies. Typically, these occur in ps-ns time scale. This rate is also comparable to the fastest electron transfer rate reported for the covalently linked porphyrin-acceptor systems (~ 50 fs, the time resolution limit). The ultrafast photo-induced electron transfers (ket > 1.2 × 1013 s-1) occurring at the S1 levels of the dyes in the structurally well-defined “straight up” ionic assemblies indicate that it is not necessary to have a strong bond and bent geometry between the donor and acceptor. In the second section, Chapter 4, we further studied the effect of using π-extended porphyrins on the electron transfer behavior of these assemblies. 9, 18, 27, 36-Tetrakis-meso-(4-carboxyphenyl)tetrabenzoporphyrinatozinc(II) (TCPBP, as a sodium salt) was selected as the candidate, and the 5, 10, 15, 20-tetrakis-meso-(4-carboxyphenyl)porphyrinatozinc(II) (TCPP, as a sodium salt) dye was also studied for comparison purposes. TCPBP and TCPP were both utilized as electron donors to fabricate supramolecular assemblies with the [Pd32+] cluster as the electron acceptor. DFT calculations were used to explain the structure of these assemblies. Under the experimental conditions used, these assemblies mainly exist in the form of one porphyrin with four equivalent clusters. These systems were also investigated by quenching measurements, electrochemistry, and other techniques. Ultrafast electron transfers (< 85 fs; time resolution limit) were also observed, which is similar as those for MCP•••[Pd32+] and [Pd32+]•••DCP•••[Pd32+] assemblies. The results indicate the structural modification from porphyrin to tetrabenzoporphyrin does not seemingly influence the kinetic behavior of the forward and back electron transfers. In the third section, Chapter 5, we synthesized a highly [pi]-conjugated porphyrin, 9, 18, 27, 36-tetra-(4-carboxyphenylethynyl)tetrabenzoporphyrinatozinc(II) (TCPEBP, as a sodium salt) by meso- and β, β-bifunctionalization, which exhibits large red shift of the Soret and Q-bands. TCPEBP was utilized as electron donors to fabricate supramolecular motifs with [Pd32+] cluster as the electron acceptor. Parallel experiments were conducted using 5, 10, 15, 20-tetra-(4-carboxyphenyl)ethynylporphyrinatozinc(II) (TCPEP, as a sodium salt). DFT and TDDFT calculations were applied to elucidate the structure of these assemblies. Binding constants for TCPEBP•••[Pd32+]x is the largest one among all the assemblies with porphyrin and palladium cluster. TAS showed again the ultrafast electron transfer process within the 75-110 fs time frame. However, the back electron transfers are also very fast (< 1 ps), which may be a potential obstacle for future applications in dye-sensitized solar cells (DSSCs). In the fourth section, Chapter 6, triplet energy transfers (TET) of the assemblies MCP•••[Pd32+] and [Pd32+]•••DCP•••[Pd32+] were studied. The transient spectral analysis in the ns-[mu]s time scale clearly demonstrates evidence for TET, which shows a slow to medium T1-T1 energy transfer (3dye*•••[Pd32+] → dye•••3[Pd32+]*) operating through a Förster mechanism exclusively with kET values of ~ 1 × 105 s-1 based on transient absorption measurements at 298 K. Unfavourable reductive and oxidative driving forces make this type of process inoperative or very slow in the T1 states. The T1 state of [Pd32+] (~8190 cm-1) has been quantitatively determined by DFT computations and by evidence for a delayed S0 ← Tn emission at 680-700 nm arising from T1-T1 annihilation, which makes this cluster potentially acting as the energy donor from its Tn state, and T1 acceptor within the assemblies. The static quenching of their near-IR phosphorescence at 785 nm was observed. This work demonstrated a moderate efficiency of the porphyrin dye to be involved in TET with an organometallic fragment, even when attached through ionic interactions. Conclusively, ionic assemblies with porphyrins and palladium clusters exhibit ultrafast S1 electron transfer and moderate T1 energy transfer properties, which is useful for possible application as optoelectronic devices. Further research in more depth is in progress.
|
3 |
Synthese von Edelmetallclustern auf S-Layern und deren katalytische Eigenschaften / Noble metal cluster synthesis on bacterial surface proteins and catalytic propertiesKirchner, Alexander 28 June 2005 (has links) (PDF)
Bakterielle Zellhüllenproteine (S-Layer) können als formgebende Muster für die bottom-up Materialsynthese Verwendung finden. Auf S-Layern von Bacillus sphaericus und Sporosarcina ureae lassen sich nasschemisch Platin- bzw. Palladiumcluster abscheiden, die sich durch ihren gleichmäßig geringen Durchmesser und ihre hohe laterale Dichte auszeichnen. Am Beginn der vorliegenden Arbeit steht die Charakterisierung des Proteintemplates, welches grundlegenden Einfluss auf die sich bildenden Edelmetallcluster hat. Die Topographie der S-Layeroberfläche wird atomkraftmikroskopisch untersucht. Durch Photoemissions- und NEXAFS-Spektroskopie werden Aussagen zur elektronischen Struktur des Proteins gewonnen, die nach entsprechender Interpretation Erklärungen für das Verhalten des Proteintemplates liefern. Daneben sind Syntheseparameter ausschlaggebend für das Erscheinungsbild des dispersen Metalls. Insbesondere der Einfluss des Reduktionsmittels auf die Clustergröße wird elektronenmikroskopisch und durch Kleinwinkelstreuung untersucht. Die katalytische Aktivität von auf gamma-Al2O3 und SiC immobilisierten metallisierten S-Layern für die Oxidation ausgewählter Kohlenwasserstoffe und Kohlenmonoxid wird bestimmt. Außerdem werden Verfahren zur Erzeugung von Gold- und Silberclustern auf S-Layern vorgestellt.
|
4 |
Synthese von Edelmetallclustern auf S-Layern und deren katalytische EigenschaftenKirchner, Alexander 18 July 2005 (has links)
Bakterielle Zellhüllenproteine (S-Layer) können als formgebende Muster für die bottom-up Materialsynthese Verwendung finden. Auf S-Layern von Bacillus sphaericus und Sporosarcina ureae lassen sich nasschemisch Platin- bzw. Palladiumcluster abscheiden, die sich durch ihren gleichmäßig geringen Durchmesser und ihre hohe laterale Dichte auszeichnen. Am Beginn der vorliegenden Arbeit steht die Charakterisierung des Proteintemplates, welches grundlegenden Einfluss auf die sich bildenden Edelmetallcluster hat. Die Topographie der S-Layeroberfläche wird atomkraftmikroskopisch untersucht. Durch Photoemissions- und NEXAFS-Spektroskopie werden Aussagen zur elektronischen Struktur des Proteins gewonnen, die nach entsprechender Interpretation Erklärungen für das Verhalten des Proteintemplates liefern. Daneben sind Syntheseparameter ausschlaggebend für das Erscheinungsbild des dispersen Metalls. Insbesondere der Einfluss des Reduktionsmittels auf die Clustergröße wird elektronenmikroskopisch und durch Kleinwinkelstreuung untersucht. Die katalytische Aktivität von auf gamma-Al2O3 und SiC immobilisierten metallisierten S-Layern für die Oxidation ausgewählter Kohlenwasserstoffe und Kohlenmonoxid wird bestimmt. Außerdem werden Verfahren zur Erzeugung von Gold- und Silberclustern auf S-Layern vorgestellt.
|
Page generated in 0.0649 seconds