• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 13
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pantothenate-p-nitroanilide as a Substrate for Pantetheinase Assay

Davidson, Robert T. 01 May 1994 (has links)
Pantothenate-p-nitroanilide has been synthesized for use as a substrate in a continuous spectrophotometric assay of pantetheinase activity monitoring absorbance at 41 0 nm. Pantothenate-p-nitroanilide is a crystalline compound with a molecular weight of 338.0 and a melting point of 146-149°C. Use of this substrate in the described assay is suitable for enzyme activity determination in high protein content media such as blood serum. Serum pantetheinase activity was determined for rats of varying pantothenate nutriture. Rats with mildly (but significantly, p
2

An Enzyme-Linked Immunosorbent Assay (ELISA) for Pantothenate

Smith, Allen H. 01 May 1981 (has links)
An enzyme-linked immunosorbent assay (ELISA) for pantothenate has been developed. Antibodies induced in rabbits against bovine serum albumin-pantothenate conjugate were specifically purified by affinity chromatography. This process served to reduce the amount of endogenous pantothenate attached to the antibody, as well as to purify the antibody. The purified antibodies were covalently linked to alkaline phosphatase (Sigma type VII) with glutaraldehyde (0.05% aqueous solution). An immobilized pantothenate substrate was first obtained by attaching human serum albumin-pantothenate conjugate to the surface of polystyrene culture tubes by passive adsorption. The binding of the enzyme labelled antibody (E-AB} to this substrate is proportionately inhibited by free pantothenate as standards or as samples for analysis. The inhibition of E-AB immobilization was quantitated at 405 nm by the hydrolysis of p-nitrophenyl phosphate as indicated by the formation of p-nitrophenol. A standard curve was plotted on log logit paper, and was linear in the range of 2 through 1000 ng pantothenate. Initial experiments show that the ELISA will be useful in assessing pantothenate in deproteinized blood samples and in food extracts.
3

Characterization of prokaryotic pantothenate kinase enzymes and the development of type-specific inhibitors

Koekemoer, Lizbe 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Pantothenate kinase (PanK) enzymes catalyze the first reaction in the five step biosynthesis of the essential cofactor coenzyme A. Enzymes representing each of the three identified PanK types have been studied and characterized and these PanK types exhibits a unique diversity between different organisms, therefore highlighting them as potential drug targets. In this study the type III PanK of specifically pathogenic bacteria were characterized with the goal of developing type-specific inhibitors. Several questions about the activity of the Mycobacterium tuberculosis enzyme was answered, which addresses the contradicting results achieved in related PanK studies performed to date. Furthermore the first inhibitors, that are competitive to the pantothenate binding site, were designed, synthesized and tested against the Pseudomonas aeruginosa enzyme. This resulted in the discovery of the most potent inhibitors of the type III PanKs to date. / AFRIKAANSE OPSOMMING: Pantoteensuurkinase-ensiem (PanK) kataliseer die eerste stap in die vyf stap biosintese van die lewens belangrike en essensiële kofaktor, koënsiem A (KoA). Die meerderheid patogeniese bakterieë, waaronder die organisme wat tuberkulose veroorsaak, besit ‘n unieke vorm van die PanK-ensiem. Gevolglik word hierdie ensieme as belangrike teikens vir die ontwikkeling van antibakteriële middels beskou. In hierdie studie is die aktiwiteit van die Mycobacterium tuberculosis ensiem gekarakteriseer wat verskeie teenstrydige bevindings oor hierdie ensiem beantwoord het. Verder is nuwe inhibitore vir die Pseudomonas aeruginosa ensiem ontwerp, gesintetiseer en getoets. Die beste inhibitore van hierdie tipe ensiem tot op hede is sodoende geïdentifiseer.
4

Solution Structural Studies And Substrate Binding Properties Of The Amino-Terminal Domain Of E.coli Pantothenate Synthetase

Chakrabarti, Kalyan Sundar 12 1900 (has links)
Pantothenate synthetase (PS), which catalyzes the last step in the pantothenate (vitamin B5) biosynthesis, is a dimeric enzyme present in bacteria, fungi and plants. The enzymatic properties of PS from Escherichia Coli, Mycobacterium tuberculosi, Fusarium Oxysporum, Lotus japonicus, Oryza sativum, Brassica napus and Arabidopsis thaliana have been characterized. The chemical reaction and the proposed mechanism of reaction are identical for PS, irrespective of the source. However, from an enzyme mechanistic point of view, plant PS’s are dissimilar to their bacterial counterparts, in that they exhibit “allosteric behavior”, a property that has not been observed in the bacterial enzyme. The behavior is quite remarkable when one takes into consideration the fact that plant PS’s share a high degree of sequence identity (~ 40%) with the bacterial enzymes. Even more intriguing is the structural mechanism proposed to explain the observed differences in structure between the PS’s from E.Coli and M.tb, which share a 42% sequence identity. Till date there is no structural information available on the plant PS’s and of the substrate bound conformation of E.coli PS. This thesis aims to provide an understanding on some aspects of the structure – function relationship of this physiologically important enzyme. Specifically, the solution properties of E. coli PS have been examined using high-resolution multinuclear, multidimensional NMR methods. Given the large size of the full-length protein (~ 63 KDa), the structurally distinct N and C-terminal domains were cloned and expressed as individual proteins and their properties investigated. Towards this end, the tertiary fold of the 40 kDa dimeric amino-terminal domain of E. coli pantothenate synthetase has been determined using multidimensional multinuclear nuclear magnetic resonance (NMR) methods (PDB entry 2k6c). Sequence specific resonance assignments for backbone HN, 15N, 13Cα, 13C', sidechain 13Cβ and aliphatic 13CH3 (of isoleucine, leucine and valine residues) were obtained using perdeuterated ILV-methyl protonated samples (BMRB entry 6940). Secondary structure of nPS was determined from 13C secondary chemical shifts and from short and medium range NOEs. Global fold of the 40 kDa homo-dimeric nPS has been determined using a total of 1012 NOEs, 696 dihedral angles, 260 RDCs, 155 hydrogen bonds, radius of gyration potential, non-crystallographic symmetry potential and database derived potential based upon the Ramachandran map. The calculated structures, which show that the N-terminal domain forms a homo-dimer in solution, is of high stereochemical quality as judged by the Ramachandran statistics (70% of the residues have backbone dihedral angles in the allowed region, 25.5% in the additionally allowed region, 4.0% in generously allowed region, and only 0.5% in disallowed region). Dynamics of nPS, which has rotational correlation time τc of 17.3 ns, was investigated by 15N relaxometry measurements. Results of these studies indicate that the E. coli protein exhibits dynamic nature at the dimer interface. These structural and dynamic features of the protein were found to be of interest when correlated with NMR based substrate binding studies. Interaction of homo-dimeric amino-terminal domain (nPS) of E. coli pantothenate synthetase (PS; encoded by the gene panC; E.C. 6.3.2.1) with the substrates pantoate, β-alanine, ATP and the product pantothenate has been studied using isotopically edited solution NMR methods. Addition of pantoate prior to ATP has led to the interesting observation that pantoate binds each monomer of nPS at two sites. ATP displaces a molecule of pantoate from the ATP binding site. β-alanine and pantothenate do not bind the protein under the condition studied. Binding of pantoate and ATP also manifests as changes in residual dipolar couplings (RDCs) of backbone 1H-15N pairs in nPS when compared to the free form of the protein. Structures of homo-dimeric nPS bound to two molecules of pantoate (PDB entry 2k6e) as well as to pantoate + ATP (PDB entry 2k6f) were calculated by inclusion of hydrogen bonds between the ligands and backbone 1H-15N pairs of nPS in addition to other NMR derived restraints. The ligand bound structures have been compared to the similar forms of the M. tb PS. Structure of each monomer of nPS bound to pantoate and ATP shows the substrates in a favorable orientation for the intermediate pantoyl adenylate to form. Moreover, at all stages of substrate binding the symmetry of the dimer was preserved. A single set of resonances was observed for all protein-ligand complexes implying symmetric binding with full-occupancy of the ligands bound to the protein. In an effort to understand the structural basis of the observed enzymatic properties of plant PS’s, a structural model of the Arabidopsis PS was constructed. The results of these structural and substrate binding studies strongly suggest that 1 Substrate binding to PS occurs only at the active site. 2 There are no additional substrate binding sites which could potentially participate as regulatory sites. 3 Pantoate does not bind at the dimer interface to induce the observed homotropic effects. 4 The structural results presented on the substrate bound forms of nPS have direct implication for the development of novel antibacterial and herbicidal agents. Recently a great deal of interest has been evinced on the effects of molecular crowding on protein folding / unfolding pathways. Nuclear magnetic resonance is the only method by which high resolution structural information can be obtained on partially denatured states of a protein under equilibrium condition. Recent methodological advances have enabled the determination of high resolution structures using information embedded in the residual dipolar couplings. Molecular crowding using confinement may thus reveal important details about chaperone mediated protein folding. We have attempted to develop a protocol to study the effects of molecular confinement by sequestering proteins in poly-acrylamide gels and then subjecting these protein molecules to denaturation and then characterize these states by nuclear magnetic resonance. The preliminary results of these studies are described here.
5

Structural Studies On Mycobacterium Tuberculosis Pantothenate Kinase (PanK)

Chetnani, Bhaskar 09 1900 (has links) (PDF)
Pantothenate kinase (PanK) is an ubiquitous and essential enzyme that catalyzes the first step in the universal Coenzyme (CoA) biosynthesis pathway. In this step, pantothenate (Vitamin B5) is converted to 4′-phosphopantothenate, which subsequently forms CoA in four enzymatic steps. In bacteria, three types of PanK’s have been identified which exhibit wide variations in their distribution, mechanisms of regulation and affinity for substrates. Type I PanK is a key regulatory enzyme in the CoA biosynthesis pathway and its activity is feedback regulated by CoA and its thioesters. As part of a major programme on mycobacterial proteins in this laboratory, structural studies on type I PanK from Mycobacterium tuberculosis (MtPanK) was initiated and the structure of this enzyme in complex with a CoA derivative has been reported earlier. To further elucidate the structural basis of the enzyme action of MtPanK, several crystal structures of the enzyme in complex with different ligands have been determined in the present study. In conjunction to this, solution studies on the enzyme were also carried out. The structures were solved using the well-established techniques of protein X-ray crystallography. The hanging drop vapour diffusion method was used for crystallization in all cases. The X-ray intensity data were collected using a MAR Research imaging plate system mounted on a Rigaku RU200 and Bruker-AXS Microstar Ultra II rotating anode X-ray generator. The data were processed using the HKL and MOSFLM and SCALA from the CCP4 suite. The structures were solved by the molecular replacement method using the program AMoRe and PHASER. Structure refinements were carried out using the programs CNS and REFMAC. Model building was carried out using COOT and the refined structures were validated using PROCHECK and MOLPROBITY. Secondary structure was assigned using DSSP, structural superpositions were made using ALIGN and buried surface area was calculated using NACCESS. Solution studies on CoA binding and catalytic activity were carried out using Isothermal titration calorimetry (ITC). To start with, the crystal structures of the complexes of MtPanK were determined with (a) citrate, (b) the non-hydrolysable ATP analog AMPPCP and pantothenate (initiation complex), (c) ADP and phosphopantothenate resulting from phosphorylation of pantothenate by ATP in the crystal (end complex), (d) ATP and ADP, each with half occupancy, resulting from a quick soak of crystals in ATP (intermediate complex), (e) CoA, (f) ADP prepared by soaking and co-crystallization, which turned out to have identical structures and (g) ADP and pantothenate. Unlike in the case of the homologous E.coli enzyme (EcPanK), AMPPCP and ADP occupied different, though overlapping, locations in the respective complexes; the same was true of pantothenate in the initiation complex and phosphopantothenate in the end complex. The binding site of MtPanK was found to be substantially preformed while that of EcPanK exhibited considerable plasticity. The difference in the behavior of the E.coli and M.tuberculosis enzymes could be explained in terms of changes in local structure resulting from substitutions. It is unusual for two homologous enzymes to exhibit such striking differences in action and the changes in the locations of ligands exhibited by M.tuberculosis pantothenate kinase are remarkable and novel. The movement of ligands exhibited by MtPanK during enzyme action appeared to indicate that the binding site of the enzyme was less specific for a particular type of ligand than EcPanK. Kinetic measurements of enzyme activity showed that MtPanK had dual substrate specificity for ATP and GTP, unlike the enzyme from E.coli which showed a much higher specificity for ATP. A molecular explanation for the difference in the specificities of the two homologous enzymes was provided by the crystal structures of the complexes of the M. tuberculosis enzyme with (1) GMPPCP and pantothenate (2) GDP and phosphopantothenate (3) GDP (4) GDP and pantothenate (5) AMPPCP and (6) GMPPCP and the structures of the complexes of the two enzymes involving CoA and different adenyl nucleotides. The explanation was substantially based on two critical substitutions in the amino acid sequence and the local conformational change resulting from them. Dual specificity of the type exhibited by this enzyme is rare and so are the striking difference between two homologous enzymes in the geometry of the binding site, locations of ligands and specificity. The crystal structures of MtPanK in binary complexes with nucleoside diphosphate (NDP) and nucleoside triphosphate (NTP) provided insights about the natural location and conformation of nucleotides. In the absence of pantothenate, the NDP and the NTP bound with an extended conformation at the same site. In the presence of pantothenate, as seen in the initiation complexes, the NTP had a closed conformation and an altered location. However, the effect of the nucleotide on the conformation and the location of pantothenate were yet to be elucidated as the natural location of the ligand in MtPanK was not known. This lacuna was sought to be filled through X-ray analysis of the binary complexes of MtPanK with pantothenate and two of its derivatives, namely, pantothenol and N-nonyl pantothenamide (N9-Pan). These structures demonstrated that pantothenate, with a somewhat open conformation occupied a location similar to that occupied by phosphopantothenate in the “end” complexes, which was distinctly different from the location of pantothenate in “closed” conformation in the ternary “initiation” complexes. The conformation and the location of the nucleotide were also different in the initiation and end complexes. An invariant arginine appeared to play a critical role in the movement of ligand that took place during enzyme action. The structure analysis of the binary complexes with the vitamin and its derivatives completed the description of the locations and conformations of nucleoside di and triphosphates and pantothenate in different binary and ternary complexes. These complexes provide snapshots of the course of action of MtPanK.
6

Insights Into The Mechanistic Details Of The M.Tuberculosis Pantothenate Kinase : The Key Regulatory Enzyme Of CoA Biosynthesis

Parimal Kumar, * 07 1900 (has links) (PDF)
Tuberculosis (TB), caused by Mycobacterium tuberculosis, has long been the scourge of humanity, claiming millions of lives. It is the most devastating infectious disease of the world in terms of mortality as well as morbidity (WHO, 2009). The lack of a uniformly effective vaccine against TB, the development of resistance in the Mycobacterium tuberculosis against the present antitubercular drugs and its synergy with AIDS has made the situation very alarming. This therefore necessitates a search for new antitubercular drugs as well as the identification of new and unexplored drug targets (Broun et aI., 1992). Coenzyme A is an essential cofactor for all organisms and is synthesized in organisms from pantothenate by a universally conserved pathway (Spry et al., 2008; Sassetti and Rubin, 2003). The first enzyme of the pathway, pantothenate kinase catalyzes the most important step of the biosynthetic process, being the first committed step of CoA biosynthesis and the one at which all the regulation takes place (Gerdes et aI., 2002) This thesis describes the successful cloning of PanK from Mycobacterium tuberculosis, its expression in E. coli, single step affinity purification, and complete biochemical and biophysical characterization. In this work, pantothenol, a widely believed inhibitor of pantothenate kinase, has been shown to act as a substrate for the mycobacterial pantothenate kinase. Further it was shown that the product, 4'phosphopantothenol, thus formed, inhibited the next step of the CoA biosynthesis pathway in vitro. The study was extended to find outthe fate of pantothenol inside the cell and it was demonstrated that the CoA biosynthetic enzymes metabolized the latter into the pantothenol derivative of CoA which then gets incorporated into acyl carrier protein. Lastly, it was decisively shown that pantothenate kinase is not only regulated by feedback inhibition by CoA but, also regulated through feed forward stimulation by Fructose 1, 6 biphosphate (FBP), a glycolytic intermediate. The binding site of FBP was determined by docking and mutational studies of MtPanK. Chapter 1 presents a brief survey of the literature related to Coenzyme A biosynthesis pathway and describes the objective of the thesis. It also presents a history of TB and briefly reviews literature describing TB as well as the life cycle, biology, survival strategy, mode of infection and the metabolic pathways operational in the TB parasite, Mycobacterium tuberculosis. The chapter details the enzymes involved in CoA biosynthesis pathway from various organims. Chapter 2 In this chapter, cloning of the ORF (Rv1092c), annotated as pantothenate kinase in the Tuberculist database (http://genolist.pasteur.frfTubercuList), its expression in E. coli and purification using affinity chromatography has been described. Protein identity was confirmed by MALDI-TOF and by its ability to complement the pantothenate kinase temperature sensitive mutant, DV70. This chapter also illustrates the oligomeric status of MtPanK in solution and describes the biochemical characterization of MtPanK by means of two different methods, spectrophotometrically by a coupled assay and calorimetrically by using Isothermal Titration Calorimetry. Feedback inhibition of MtPanK by CoA is also discussed in this chapter. Chapter 3 describes the biophysical characterization of MtPanK. It discusses the enthalpy (~H) and free energy change (~G) accompanying the binding of a non-hydrolysable analogue of ATP; CoA; acetyl CoA and malonyl-CoA to MtPanK. The chapter details the energetics observed upon ATP binding to pantothenate-saturated MtPanK further elucidating the order of the reaction. This chapter also describes the various strategies which were designed and tested to remove CoA from the enzyme as the latter is always purified from the cell in conjunction with CoA. Validation of these strategies for complete CoA removal (by studying the n value from ITC studies) is further described. Chapter 4 discusses the interaction of the well-studied inhibitor of pantothenate kinases from other sources (e.g. the malarial parasite), pantothenol, with the mycobacterial enzyme. In order to investigate the interaction of this compound with MtPanK, its effect on the kinetic reaction carried out by the enzyme was studied by several methods. Surprisingly, a new band corresponding to 4'phosphopantothenol appeared when the reaction mix of MtPanK with pantothenol and ATP was separated on TLC. The identity of the new spot was confirmed by mass spectrometry analyses of the MtPanK reaction mixture.. These findings established the fact that pantothenol is a substrate of pantothenate kinase. To delve deeper into the mechanism of interaction of this compound with the enzymes of the coenzyme A biosynthesis pathway, the ability of pantothenol to serve as a substrate for the next step of the pathway, MtCoaBC was studied. Using various approaches it was established that pantothenol is actually a substrate for the MtPanK and the inhibition observed earlier (Saliba et aI., 2005) is actually due to the inability of CoaBC to utilize 4' -phosphopantothenol as substrate. Chapter 5 takes the story from Chapter 4 further detailing the effects of pantothenol on cultures of E. coli and M. smegmatis. I observed that pantothenol does not inhibit the culture of E. coli or M. smegmatis. So, further studies were carried out to know the fate of pantothenol once it is converted into 4'phosphopantothenoi. Since, the next enzyme of the pathway does not utilize 4'phosphopantothenol, I checked the further downstream enzyme of the pathway, CoaD, and found that it converts 4'-phosphopantothenol to thepantothenol derivative of dephospho-CoA. The next enzyme of the pathway, CoaE, took up this pantothenol derivative of dephospho-CoA as a substrate and converted it to the pantothenol derivative of CoA which was then transferred to apo-ACP by holo-ACP synthase. The holo-ACP thus synthesized enters into the dedicated pathway of fatty acid synthesis. Extensive investigations have been carried out on the regulation of pantothenate kinases, by the product of the pathway, Coenzyme A and its thioesters, xx establishing the latter as the feedback regulators of these enzymes. In order to determine if the cell employs mechanisms to sense available carbon sources and consequently modulate its coenzyme A levels by regulating activity of the enzymes involvedin CoA biosynthesis, glycolytic intermediates were tested against MtPanK for their possible role in the regulation of MtPanK activity. Chapter 6 details my identification of a novel regulator of MtPanK activity, fructose-I, 6-bisphosphate (FBP), a glycolytic intermediate, which enhances the MtPanK catalyzed phosphorylation of pantothenate by three fold. Further, the possible mechanisms through which FBP mediates MtPanK activation are also discussed. This chapter also describes the experiments carried out to identify the binding site of FBP on MtPariK.Interestingly, docking of FBP on MtPanK revealed that FBP binds close to the ATP binding site on the enzyme with one of its phosphates overlapping with the 3'~phosphate of CoA thereby validating its competitive binding relative to CoA on MtPanK. Based on these observations I propose that the binding of FBP to MtPanK lowers the activation energy of pantothenate phosphorylation by PanK. Chapter 7 presents a summary of the findings of this work. Coenzyme A biosynthesis pathway harbors immense potential in the development of drug against many communicable diseases, thanks to its essentiality for the pathogens and the differences between the pathogen and host CoA biosynthetic enzymes. The work done in this thesis extensively characterizes the first committed enzyme of the CoA biosynthetic pathway, pantothenate kinase, from Mycobacterium tuberculosis (MtPanK). The thesis also deals with the fate of a known inhibitor of PanK and proves it as a substrate for MtPanK. Finally this thesis describes a new link between glycolysis and CoA biosynthesis. Biotin, like coenzyme A, is another essential cofactor required by several enzymes in critical metabolic pathways. De novo synthesis of this critical metabolite has been reported only in plants and microorganisms. Therefore targeting the synthesis of biotin in the tubercular pathogen is another effective means of handicapping the tubercle pathogen. During the course of my studies, I also investigated the mycobacterial biotin biosynthesis pathway, studying the first enzyme of the pathway, 7-keto-8-aminopelargonic acid (KAPA) synthase (bioF) in extensive detail. Appendix 1 elucidates the kinetic properties of 7-keto-8aminopelargonic acid synthase (bioF) from Mycobacterium tuberculosis and proves beyond doubt that D-alanine which has previously been reported to act as a competitive inhibitor for the B. sphaericus enzyme (Ploux et al., 1999), is actually a substrate for the mycobacterial bioF.
7

Structure-based Development of Vitamin B5 Analogs and Evaluation of their Antimicrobial Efficiency against S. aureus and E. coli

Mottaghi, Katayoun 18 March 2013 (has links)
The objective of this study is to evaluate pseudo-substrates of pantothenate kinase (PanK) for the therapeutic treatment of multidrug resistant bacterial infections of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Pantothenate (Pan) analogs, including N- pentylpantothenamide (N5-Pan) and N-heptylpantothenamide (N7-Pan), hamper bacterial growth by utilizing the PanK enzymes, which normally catalyze the rate determining step of the Coenzyme A biosynthetic pathway. Here we report the structures of SaPanK, Human PanK3 and EcPanK complexed with N7-Pan or N5-Pan, all of which have provided the opportunity to investigate the structural differences of bacterial and human Pan binding sites. The MTT assay showed these analogs to exhibit no apparent cytotoxicity against Human A549 lung adenocarcinoma cells, human HepG2 hepatoma cells and human umbilical vein endothelial cells (HUVEC). The presented structural differences have the potential for aiding the development of species-specific antimicrobial compounds with minimal effects on human cells.
8

Structure-based Development of Vitamin B5 Analogs and Evaluation of their Antimicrobial Efficiency against S. aureus and E. coli

Mottaghi, Katayoun 18 March 2013 (has links)
The objective of this study is to evaluate pseudo-substrates of pantothenate kinase (PanK) for the therapeutic treatment of multidrug resistant bacterial infections of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Pantothenate (Pan) analogs, including N- pentylpantothenamide (N5-Pan) and N-heptylpantothenamide (N7-Pan), hamper bacterial growth by utilizing the PanK enzymes, which normally catalyze the rate determining step of the Coenzyme A biosynthetic pathway. Here we report the structures of SaPanK, Human PanK3 and EcPanK complexed with N7-Pan or N5-Pan, all of which have provided the opportunity to investigate the structural differences of bacterial and human Pan binding sites. The MTT assay showed these analogs to exhibit no apparent cytotoxicity against Human A549 lung adenocarcinoma cells, human HepG2 hepatoma cells and human umbilical vein endothelial cells (HUVEC). The presented structural differences have the potential for aiding the development of species-specific antimicrobial compounds with minimal effects on human cells.
9

Structural Studies of the Klebsiella Pneumoniae Pantothenate Kinase in Complex with Pantothenamide Substrate Analogues

Li, Buren 20 November 2012 (has links)
N-substituted pantothenamides are analogues of pantothenate, the precursor of the essential metabolic cofactor coenzyme A (CoA). These compounds are substrates of pantothenate kinase (PanK) in the first step of CoA biosynthesis, possessing antimicrobial activity against multiple pathogenic bacteria. This enzyme is an attractive target for drug discovery due to low sequence homology between bacterial and human PanKs. In this study, the crystal structure of the PanK from the multidrug-resistant bacterium Klebsiella pneumoniae (KpPanK) was first solved in complex with N-pentylpantothenamide (N5-Pan). The structure reveals that the N5-Pan pentyl tail is located within a highly aromatic pocket, suggesting that an aromatic substituent may enhance binding affinity to the enzyme. This finding led to the design of N-pyridin-3-ylmethylpantothenamide (Np-Pan) and its co-crystal structure with KpPanK was solved. The structure reveals that the pyridine ring adopts alternative conformations in the aromatic pocket, providing the structural basis for further improvement of pantothenamide-binding to KpPanK.
10

Structural Studies of the Klebsiella Pneumoniae Pantothenate Kinase in Complex with Pantothenamide Substrate Analogues

Li, Buren 20 November 2012 (has links)
N-substituted pantothenamides are analogues of pantothenate, the precursor of the essential metabolic cofactor coenzyme A (CoA). These compounds are substrates of pantothenate kinase (PanK) in the first step of CoA biosynthesis, possessing antimicrobial activity against multiple pathogenic bacteria. This enzyme is an attractive target for drug discovery due to low sequence homology between bacterial and human PanKs. In this study, the crystal structure of the PanK from the multidrug-resistant bacterium Klebsiella pneumoniae (KpPanK) was first solved in complex with N-pentylpantothenamide (N5-Pan). The structure reveals that the N5-Pan pentyl tail is located within a highly aromatic pocket, suggesting that an aromatic substituent may enhance binding affinity to the enzyme. This finding led to the design of N-pyridin-3-ylmethylpantothenamide (Np-Pan) and its co-crystal structure with KpPanK was solved. The structure reveals that the pyridine ring adopts alternative conformations in the aromatic pocket, providing the structural basis for further improvement of pantothenamide-binding to KpPanK.

Page generated in 0.051 seconds