1 |
Developing an efficient scheduling template of a chemotherapy treatment unit: simulation and optimization approachAhmed, Zubair 11 1900 (has links)
This study is undertaken to improve the performance of a Chemotherapy Treatment Unit by increasing the throughput of the clinic and reducing the average patients’ waiting time. In order to achieve this objective, a simulation model of this system is built and several scenarios that target matching the arrival pattern of the patients and resources availability are designed and evaluated. After performing detailed analysis, one scenario proves to provide the best system’s performance. The best scenario determines a rational arrival pattern of the patient matching with the nurses’ availability and can serve 22.5% more patients daily. Although the simulation study shows the way to serve more patients daily, it does not explain how to sequence them properly to minimize the average patients’ waiting time. Therefore, an efficient scheduling algorithm was developed to build a scheduling template that minimizes the total flow time of the system.
|
2 |
Developing an efficient scheduling template of a chemotherapy treatment unit: simulation and optimization approachAhmed, Zubair 11 1900 (has links)
This study is undertaken to improve the performance of a Chemotherapy Treatment Unit by increasing the throughput of the clinic and reducing the average patients’ waiting time. In order to achieve this objective, a simulation model of this system is built and several scenarios that target matching the arrival pattern of the patients and resources availability are designed and evaluated. After performing detailed analysis, one scenario proves to provide the best system’s performance. The best scenario determines a rational arrival pattern of the patient matching with the nurses’ availability and can serve 22.5% more patients daily. Although the simulation study shows the way to serve more patients daily, it does not explain how to sequence them properly to minimize the average patients’ waiting time. Therefore, an efficient scheduling algorithm was developed to build a scheduling template that minimizes the total flow time of the system.
|
3 |
Um estudo sobre problemas de escalonamento de tarefas com atrasos de comunicação de valores extremos / A study of scheduling problems subjected to extreme delay valuesPires, Renan Ferraz January 2013 (has links)
Esta dissertação de mestrado apresenta um estudo sobre problemas de escalonamento de tarefas com atrasos de comunicação. Mais precisamente, são abordados problemas de escalonar um conjunto de tarefas em um conjunto de máquinas paralelas de número limitado ou não, e tarefas de tempo de processamento unitário, sujeitas a relações de precedência, e com atrasos de comunicação estabelecidos para cada par de tarefas precedentes, assumindo valores extremos, ou seja, podendo ser desprezíveis ou infinitamente grandes, isto com o objetivo de minimizaro o tempo em que a última tarefa escalonada termina seu processamento - minimização do makespan. Sendo assim, dois problemas são demostrados serem da classe NP-difícil. Para o primeiro, a quantidade de processadores é indicada a cada instância, sendo este resultado válido ainda que as relações de precedência formem um conjunto de cadeias (P|chains; cij ∈ {0, ∞}; pj = 1|Cmax). O segundo problema admite relações de precedência arbitrárias e é válido para qualquer quantidade fixa de processadores diferente de um (P2|prec;cij ∈ {0, ∞}; pj = 1|Cmax). Por outro lado, neste trabalho, dois outros problemas são demonstrados serem solúveis em tempo polinomial, ou seja, estarem na classe P, ambos quando uma quantidade ilimitada de processadores está disponível. É visto que, se a ordem de precedência das tarefas é limitada a uma árvore descendente, o problema é polinomial (P∞|tree; cij ∈ {0, ∞}; pj = 1|Cmax). O outro caso polinomial demonstrado é válido quando é permitido processar a mesma tarefa em mais de um processador (P∞|prec; cij ∈ {0, ∞}; pj = 1|Cmax). Para ambos os casos são apresentados os algoritmos polinomiais. Finalmente, são apresentados resultados para o problema de escalonar tarefas particionadas em conjuntos para os quais todas as tarefas devem ser processadas no mesmo processador. O problema é NP-difícil quando a quantidade de processadores é determinada a cada instância. Esse resultado é válido ainda que a precedência seja restrita a duas cadeias. O problema se torna polinomial quando o conjunto de partições é limitado por constante e as cadeias são restritas em uma das duas formas: pela quantidade delas ou pela quantidade de tarefas em cada uma delas. Como trabalho futuro, este estudo deixa em aberto a NP-Completude do problema de escalonar sob tais atrasos de comunicação de valores extremos, para uma quantidade fixa de processadores, quando a ordem de precedência é de alguma forma restrita, por exemplo, uma árvore descendente (Pm|out-tree;cij ∈ {0, ∞}; pj = 1|Cmax). / This Master’s Thesis presents a study on scheduling problems subject to communication delays. More precisely, this work involves job scheduling problems with a number of parallel machines, limited or not, and where the tasks (or jobs) have unit execution time, and are subject to some precedence relation. Communication delays are imposed at each pair of preceding tasks, taking extreme values, which may be negligible or infinitely large. The objective is minimize the completion time of the latest job to be processed, that is, to get the minimum makespan. Thus, NP-hard results are demonstrated for two cases. For the first, when the number of processors is indicated in the instance of the problem, and this result holds even when the precedence relation is restricted to a set of chains (P|chains; cij ∈ {0, ∞}; pj = 1|Cmax). The second results is valid when arbitrary precedence relations are allowed, and any fixed number of processors (greater than one) is available (P2|prec;cij ∈ {0, ∞}; pj = 1|Cmax). Two other problems are demonstrated to have polynomial time solutions, both when an unlimited number of processors are available. The first result imposes the precedence relation to be an out-tree (P∞|tree; cij ∈ {0, ∞}; pj = 1|Cmax). The second result is valid when the execution of the same job on multiples processors are allowed (P∞|prec; cij ∈ {0, ∞}; pj = 1|Cmax). For both cases, polynomial algorithms are presented. Finally, results are presented for the problem of job scheduling that are partitioned in sets which must be executed on the same processors. The problem is demonstrated to be NP-hard even if the precedence relation consists of two chains. Also, it is shown that the problem becomes solvable in polynomial time if the number of partitions is limited by a constant and the chains are restricted by a constant on either their number, or the number of tasks that each chain may have. As future work, this study leaves open whether is NP-hard the case to schedule tasks subject to such communication delays with extreme values, when a fixed number of processors is available, and the precedence relations are some how restricted, for example, by an out-tree (Pm|out-tree;cij ∈ {0, ∞}; pj = 1|Cmax).
|
4 |
Um estudo sobre problemas de escalonamento de tarefas com atrasos de comunicação de valores extremos / A study of scheduling problems subjected to extreme delay valuesPires, Renan Ferraz January 2013 (has links)
Esta dissertação de mestrado apresenta um estudo sobre problemas de escalonamento de tarefas com atrasos de comunicação. Mais precisamente, são abordados problemas de escalonar um conjunto de tarefas em um conjunto de máquinas paralelas de número limitado ou não, e tarefas de tempo de processamento unitário, sujeitas a relações de precedência, e com atrasos de comunicação estabelecidos para cada par de tarefas precedentes, assumindo valores extremos, ou seja, podendo ser desprezíveis ou infinitamente grandes, isto com o objetivo de minimizaro o tempo em que a última tarefa escalonada termina seu processamento - minimização do makespan. Sendo assim, dois problemas são demostrados serem da classe NP-difícil. Para o primeiro, a quantidade de processadores é indicada a cada instância, sendo este resultado válido ainda que as relações de precedência formem um conjunto de cadeias (P|chains; cij ∈ {0, ∞}; pj = 1|Cmax). O segundo problema admite relações de precedência arbitrárias e é válido para qualquer quantidade fixa de processadores diferente de um (P2|prec;cij ∈ {0, ∞}; pj = 1|Cmax). Por outro lado, neste trabalho, dois outros problemas são demonstrados serem solúveis em tempo polinomial, ou seja, estarem na classe P, ambos quando uma quantidade ilimitada de processadores está disponível. É visto que, se a ordem de precedência das tarefas é limitada a uma árvore descendente, o problema é polinomial (P∞|tree; cij ∈ {0, ∞}; pj = 1|Cmax). O outro caso polinomial demonstrado é válido quando é permitido processar a mesma tarefa em mais de um processador (P∞|prec; cij ∈ {0, ∞}; pj = 1|Cmax). Para ambos os casos são apresentados os algoritmos polinomiais. Finalmente, são apresentados resultados para o problema de escalonar tarefas particionadas em conjuntos para os quais todas as tarefas devem ser processadas no mesmo processador. O problema é NP-difícil quando a quantidade de processadores é determinada a cada instância. Esse resultado é válido ainda que a precedência seja restrita a duas cadeias. O problema se torna polinomial quando o conjunto de partições é limitado por constante e as cadeias são restritas em uma das duas formas: pela quantidade delas ou pela quantidade de tarefas em cada uma delas. Como trabalho futuro, este estudo deixa em aberto a NP-Completude do problema de escalonar sob tais atrasos de comunicação de valores extremos, para uma quantidade fixa de processadores, quando a ordem de precedência é de alguma forma restrita, por exemplo, uma árvore descendente (Pm|out-tree;cij ∈ {0, ∞}; pj = 1|Cmax). / This Master’s Thesis presents a study on scheduling problems subject to communication delays. More precisely, this work involves job scheduling problems with a number of parallel machines, limited or not, and where the tasks (or jobs) have unit execution time, and are subject to some precedence relation. Communication delays are imposed at each pair of preceding tasks, taking extreme values, which may be negligible or infinitely large. The objective is minimize the completion time of the latest job to be processed, that is, to get the minimum makespan. Thus, NP-hard results are demonstrated for two cases. For the first, when the number of processors is indicated in the instance of the problem, and this result holds even when the precedence relation is restricted to a set of chains (P|chains; cij ∈ {0, ∞}; pj = 1|Cmax). The second results is valid when arbitrary precedence relations are allowed, and any fixed number of processors (greater than one) is available (P2|prec;cij ∈ {0, ∞}; pj = 1|Cmax). Two other problems are demonstrated to have polynomial time solutions, both when an unlimited number of processors are available. The first result imposes the precedence relation to be an out-tree (P∞|tree; cij ∈ {0, ∞}; pj = 1|Cmax). The second result is valid when the execution of the same job on multiples processors are allowed (P∞|prec; cij ∈ {0, ∞}; pj = 1|Cmax). For both cases, polynomial algorithms are presented. Finally, results are presented for the problem of job scheduling that are partitioned in sets which must be executed on the same processors. The problem is demonstrated to be NP-hard even if the precedence relation consists of two chains. Also, it is shown that the problem becomes solvable in polynomial time if the number of partitions is limited by a constant and the chains are restricted by a constant on either their number, or the number of tasks that each chain may have. As future work, this study leaves open whether is NP-hard the case to schedule tasks subject to such communication delays with extreme values, when a fixed number of processors is available, and the precedence relations are some how restricted, for example, by an out-tree (Pm|out-tree;cij ∈ {0, ∞}; pj = 1|Cmax).
|
5 |
Um estudo sobre problemas de escalonamento de tarefas com atrasos de comunicação de valores extremos / A study of scheduling problems subjected to extreme delay valuesPires, Renan Ferraz January 2013 (has links)
Esta dissertação de mestrado apresenta um estudo sobre problemas de escalonamento de tarefas com atrasos de comunicação. Mais precisamente, são abordados problemas de escalonar um conjunto de tarefas em um conjunto de máquinas paralelas de número limitado ou não, e tarefas de tempo de processamento unitário, sujeitas a relações de precedência, e com atrasos de comunicação estabelecidos para cada par de tarefas precedentes, assumindo valores extremos, ou seja, podendo ser desprezíveis ou infinitamente grandes, isto com o objetivo de minimizaro o tempo em que a última tarefa escalonada termina seu processamento - minimização do makespan. Sendo assim, dois problemas são demostrados serem da classe NP-difícil. Para o primeiro, a quantidade de processadores é indicada a cada instância, sendo este resultado válido ainda que as relações de precedência formem um conjunto de cadeias (P|chains; cij ∈ {0, ∞}; pj = 1|Cmax). O segundo problema admite relações de precedência arbitrárias e é válido para qualquer quantidade fixa de processadores diferente de um (P2|prec;cij ∈ {0, ∞}; pj = 1|Cmax). Por outro lado, neste trabalho, dois outros problemas são demonstrados serem solúveis em tempo polinomial, ou seja, estarem na classe P, ambos quando uma quantidade ilimitada de processadores está disponível. É visto que, se a ordem de precedência das tarefas é limitada a uma árvore descendente, o problema é polinomial (P∞|tree; cij ∈ {0, ∞}; pj = 1|Cmax). O outro caso polinomial demonstrado é válido quando é permitido processar a mesma tarefa em mais de um processador (P∞|prec; cij ∈ {0, ∞}; pj = 1|Cmax). Para ambos os casos são apresentados os algoritmos polinomiais. Finalmente, são apresentados resultados para o problema de escalonar tarefas particionadas em conjuntos para os quais todas as tarefas devem ser processadas no mesmo processador. O problema é NP-difícil quando a quantidade de processadores é determinada a cada instância. Esse resultado é válido ainda que a precedência seja restrita a duas cadeias. O problema se torna polinomial quando o conjunto de partições é limitado por constante e as cadeias são restritas em uma das duas formas: pela quantidade delas ou pela quantidade de tarefas em cada uma delas. Como trabalho futuro, este estudo deixa em aberto a NP-Completude do problema de escalonar sob tais atrasos de comunicação de valores extremos, para uma quantidade fixa de processadores, quando a ordem de precedência é de alguma forma restrita, por exemplo, uma árvore descendente (Pm|out-tree;cij ∈ {0, ∞}; pj = 1|Cmax). / This Master’s Thesis presents a study on scheduling problems subject to communication delays. More precisely, this work involves job scheduling problems with a number of parallel machines, limited or not, and where the tasks (or jobs) have unit execution time, and are subject to some precedence relation. Communication delays are imposed at each pair of preceding tasks, taking extreme values, which may be negligible or infinitely large. The objective is minimize the completion time of the latest job to be processed, that is, to get the minimum makespan. Thus, NP-hard results are demonstrated for two cases. For the first, when the number of processors is indicated in the instance of the problem, and this result holds even when the precedence relation is restricted to a set of chains (P|chains; cij ∈ {0, ∞}; pj = 1|Cmax). The second results is valid when arbitrary precedence relations are allowed, and any fixed number of processors (greater than one) is available (P2|prec;cij ∈ {0, ∞}; pj = 1|Cmax). Two other problems are demonstrated to have polynomial time solutions, both when an unlimited number of processors are available. The first result imposes the precedence relation to be an out-tree (P∞|tree; cij ∈ {0, ∞}; pj = 1|Cmax). The second result is valid when the execution of the same job on multiples processors are allowed (P∞|prec; cij ∈ {0, ∞}; pj = 1|Cmax). For both cases, polynomial algorithms are presented. Finally, results are presented for the problem of job scheduling that are partitioned in sets which must be executed on the same processors. The problem is demonstrated to be NP-hard even if the precedence relation consists of two chains. Also, it is shown that the problem becomes solvable in polynomial time if the number of partitions is limited by a constant and the chains are restricted by a constant on either their number, or the number of tasks that each chain may have. As future work, this study leaves open whether is NP-hard the case to schedule tasks subject to such communication delays with extreme values, when a fixed number of processors is available, and the precedence relations are some how restricted, for example, by an out-tree (Pm|out-tree;cij ∈ {0, ∞}; pj = 1|Cmax).
|
6 |
SCHEDULING ROTARY INJECTION MOLDING MACHINEUrs, Shravan B. R. January 2005 (has links)
No description available.
|
7 |
Optimization of Large-Scale Single Machine and Parallel Machine Scheduling / Large-Scale Single Machine and Parallel Machine Scheduling in the Steel Industry with Sequence-Dependent Changeover CostsLee, Che January 2022 (has links)
Hundreds of steel products need to be scheduled on a single or parallel machine in a steel plant every week. A good feasible schedule may save the company millions of dollars compared to a bad one. Single and parallel machine scheduling are also encountered often in many other industries, making it a crucial research topic for both the process system engineering and operations research communities.
Single or parallel machine scheduling can be a challenging combinatorial optimization problem when a large number of jobs are to be scheduled. Each job has unique job characteristics, resulting in different setup times/costs depending on the processing sequence. They also have specific release dates to follow and due dates to meet.
This work presents both an exact method using mixed-integer quadratic programming, and an approximate method with metaheuristics to solve real-world large-scale single/parallel machine scheduling problems faced in a steel plant. More than 1000 or 350 jobs are to be scheduled within a one-hour time limit in the single or parallel machine problem, respectively. The objective of the single machine scheduling is to minimize a combined total changeover, total earliness, and total tardiness cost, whereas the objective of the parallel machine scheduling is to minimize an objective function comprising the gaps between jobs before a critical time in a schedule, the total changeover cost, and the total tardiness cost. The exact method is developed to benchmark computation time for a small-scale single machine problem, but is not practical for solving the actual large-scale problem. A metaheuristic algorithm centered on variable neighborhood descent is developed to address the large-scale single machine scheduling with a sliding-window decomposition strategy. The algorithm is extended and modified to solve the large-scale parallel machine problem. Statistical tests, including Student's t-test and ANOVA, are conducted to determine efficient solution strategies and good parameters to be used in the metaheuristics. / Thesis / Master of Applied Science (MASc)
|
8 |
Hadoop scalability evaluation for machine learning algorithms on physical machines : Parallel machine learning on computing clustersRoderus, Jens, Larson, Simon, Pihl, Eric January 2021 (has links)
The amount of available data has allowed the field of machine learning to flourish. But with growing data set sizes comes an increase in algorithm execution times. Cluster computing frameworks provide tools for distributing data and processing power on several computer nodes and allows for algorithms to run in feasible time frames when data sets are large. Different cluster computing frameworks come with different trade-offs. In this thesis, the scalability of the execution time of machine learning algorithms running on the Hadoop cluster computing framework is investigated. A recent version of Hadoop and algorithms relevant in industry machine learning, namely K-means, latent Dirichlet allocation and naive Bayes are used in the experiments. This paper provides valuable information to anyone choosing between different cluster computing frameworks. The results show everything from moderate scalability to no scalability at all. These results indicate that Hadoop as a framework may have serious restrictions in how well tasks are actually parallelized. Possible scalability improvements could be achieved by modifying the machine learning library algorithms or by Hadoop parameter tuning.
|
9 |
以啟發式方法解決具迴流性質之彈性流程式排程問題 / Developing Heuristics for the Scheduling Problem With Recirculation on Flexible flow shop陳俊吉, Chen, Chun Chi Unknown Date (has links)
由於網際網路的發展,使得全球環境變遷,競爭越來越激烈,企業必須面臨快速的需求變化,以及訂單履行時間縮短的問題,因此如何有效的利用生產規劃和現場排程來幫助企業達到較高的訂單達成率和即時反應現場產能一直是製造業努力的目標。
在排程的問題中,用派工法則來解決排程問題的工廠類型,主要集中在零工式生產系統及流程式生產系統,而進一步加入平行機器概念,即是彈性零工式生產及彈性流程式生產。而現在許多的服務業也都是屬於彈性流程式生產的模式,而且還具有迴流(recirculation)之性質,而之前使用在不具迴流性質之彈性流程式生產的派工法則,在具有迴流性質之彈性流程式生產中是否仍然可以表現良好,是值得探討的。然而更進一步在此具有迴流性質之彈性流程式生產中加入多工的性質,使工作可以被兩個或兩個以上的機器或操作人員進行處理,則運用哪個派工法則讓機器或操作人員選擇工作來進行處理,可以使得選定的目標值有良好的表現,是相當值得研究之問題。 / As information technology advances, whole world environmental trend and the competition is more and more intense. The enterprise must face faster demand changes and the problem of shorter order fulfillment. Therefore, how to apply efficient production planning and shop floor scheduling to attain a better order fulfillment and real time production of shop floor capacity is the goal enterprises strive toward.
The shop floor scheduling problems using dispatching rules to solve are focus on job shop scheduling problems and flow shop scheduling problems. Moreover, those problems adding the concept of parallel machine will change into flexible job shop scheduling problems and flexible flow shop scheduling problems. Many service industries also belong to this type. In addition, those service industries’ processes also contain the important characteristic of recirculation. Now, there are two problems I would like to solve. First, Whether the dispatching rules which can get good results in flexible flow shop scheduling problems will also get good results in flexible flow shop scheduling problems with recirculation. Second, I add the characteristic of parallel machine into my problem, so it means jobs in the process can be operated by two or more workers. Therefore, which dispatching rule will get better results based on chosen achievement targets in the problem is very interesting to research.
|
10 |
A distributed kernel summation framework for machine learning and scientific applicationsLee, Dong Ryeol 11 May 2012 (has links)
The class of computational problems I consider in
this thesis share the common trait of requiring
consideration of pairs (or higher-order tuples)
of data points. I focus on the problem of kernel
summation operations ubiquitous in many data
mining and scientific algorithms.
In machine learning, kernel summations appear in
popular kernel methods which can model nonlinear
structures in data. Kernel methods include many
non-parametric methods such as kernel density
estimation, kernel regression, Gaussian process
regression, kernel PCA, and kernel support vector
machines (SVM). In computational physics,
kernel summations occur inside the classical
N-body problem for simulating positions of a set
of celestial bodies or atoms.
This thesis attempts to marry, for the first
time, the best relevant techniques in parallel
computing, where kernel summations are in low
dimensions, with the best general-dimension
algorithms from the machine learning literature.
We provide a unified, efficient parallel
kernel summation framework that can utilize:
(1) various types of deterministic and
probabilistic approximations that may be
suitable for both low and high-dimensional
problems with a large number of data points;
(2) indexing the data using any multi-dimensional
binary tree with both distributed memory (MPI)
and shared memory (OpenMP/Intel TBB) parallelism;
(3) a dynamic load balancing scheme to adjust
work imbalances during the computation.
I will first summarize my previous research in
serial kernel summation algorithms. This work
started from Greengard/Rokhlin's earlier work on
fast multipole methods for the purpose of
approximating potential sums of many particles.
The contributions of this part of this thesis
include the followings: (1) reinterpretation of
Greengard/Rokhlin's work for the computer science
community; (2) the extension of the algorithms to
use a larger class of approximation strategies,
i.e. probabilistic error bounds via Monte Carlo
techniques; (3) the multibody series expansion:
the generalization of the theory of fast
multipole methods to handle interactions of more
than two entities; (4) the first O(N) proof of
the batch approximate kernel summation using a
notion of intrinsic dimensionality. Then I move
onto the problem of parallelization of the kernel
summations and tackling the scaling of two other
kernel methods, Gaussian process regression
(kernel matrix inversion) and kernel PCA (kernel
matrix eigendecomposition).
The artifact of this thesis has contributed to an
open-source machine learning package called
MLPACK which has been first demonstrated at the
NIPS 2008 and subsequently at the NIPS 2011 Big
Learning Workshop. Completing a portion of this
thesis involved utilization of high performance
computing resource at XSEDE (eXtreme Science and
Engineering Discovery Environment) and NERSC
(National Energy Research Scientific Computing
Center).
|
Page generated in 0.0602 seconds