• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 112
  • 21
  • 17
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 8
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 503
  • 410
  • 376
  • 104
  • 101
  • 99
  • 96
  • 87
  • 66
  • 59
  • 57
  • 51
  • 48
  • 41
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Centros paramagnéticos do NH4Br:Cu2+ / Paramagnetic centers of NH4Br:Cu2+

Eduardo di Mauro 20 January 1993 (has links)
Com o objetivo de entendermos como as duas transições de fase, abaixo da temperatura ambiente, modificam o comportamento dos centros paramagnéticos formados em torno do Cu2+, estudamos o NH4BR:Cu2+ crescido em soluções cujo pH variou de zero a 8,26. Utilizando principalmente, a RPE nas bandas X e Q, realizamos um estudo térmico e angular desde 77 K à temperatura ambiente, com o qua1 verificamos que o NH4BR:Cu2+ forma três centros paramagnéticos distintos, de acordo com o pH das soluções, sendo um deles descrito pela primeira vez. Pelas simetrias apresentadas para cada uma das fases do cristal, pudemos propor modelos para estes centros compatíveis com as transições de fase. Mostramos que em virtude da forte covalência apresentada pelos centros, a interação superhiperfina supera a hiperfina. / In order to understand how the two phase transitions, below the room temperature, change the behavior of the paramagnetic centres formed around the Cu2+, we have been studying the NH4Br:Cu2+, grown in solutions with pH varying from zero to 8.26. Using mainly EPR at X and Q bands, we performed a thermal and angular study from 77 K to room temperature. We verified that the NH4Br:Cu2+ forms three distinct paramagnetic centres depending on the pH of the solution, one of them we described for the first time. According to the symmetries of each phase, satisfactory models have been proposed for these centres. As a result of the strong covalency exhibited by Cu2+ and its neighbourhood, we have shown that the superhyperfine interaction is greater than the hyperfine one.
192

Boundary current response in Ba0.34K0.64Fe2As2 superconducting single crystal probed by non-resonant microwave absorption technique

Ramashitja, Tshiwela Caroline 06 1900 (has links)
Non-resonant microwave absorption (NRMA) in superconducting materials has become a new experimental technique to probe and understand superconducting materials. For example cuprate superconductors are well studied with this technique. At the same time the technique is also evolving. This technique (NRMA) has been used to study magnetic shielding effects/boundary current in Ba0.34K0.64Fe2As2 (BaK122) single crystals of iron pnictides superconducting sample measured at 9.4 GHz below TC (4.2K-32K). It has been observed that a small modulation field used in NRMA experiment yield the boundary current response. We have established that the boundary current response depends on both modulation amplitude and the temperature. At high modulation field amplitudes and temperatures close to Tc the boundary current response gets suppressed and flux modulated response dominates. At low temperatures far away from Tc, only the boundary current response dominates. / Physics / M. Sc. (Physics)
193

Dynamic nuclear polarisation of diamond

High, Grant Lysle 08 1900 (has links)
This study is presented in nine chapters as follows: Chapter one reviews the reported literature on the NMR of natural diamond. The NMR signal of diamond consists on a single line at 39 ppm from TMS and two hyperfine lines due to 13C interactions. The reported relaxation times, measured in natural diamond, synthetic diamonds and 13C enriched diamonds, are discussed. The second chapter introduces the apparatus used, which included a Bruker Avance NMR spectrometer, a Bruker ESP380E pulsed EPR spectrometer and a high powersband DNP system. The availability of this excellently equiped laboratory presented a unique opportunity to perform this investigation. Chapter three outlines the experimental techniques used as well as the manner in which the acquired data was processed. The fourth chapter presents an overview of the most common defects found in diamond. Proposed models of these defects are presented and the resulting EPR spectra displayed. The methods developed to determine the paramagnetic impurity concentration from the EPR line width and the spin-spin relaxation times are presented in the fifth chapter. The line width gives the total paramagnetic impurity concentration to about 10 ppm. The spin-spin relaxation time allows the determination of Pl and P2 paramagnetic impurity concentrations individually, to much lower levels from measurements on the central and hyperfine lines. This information was used in the explanation of the relaxation behaviour for the various diamonds investigated. The temperature dependence of the paramagnetic electron relaxation times is reported in the sixth chapter. The results obtained are consistent with the findings in prior work that Pl impurities are typical Jahn Teller centres. Two diamonds, however, display trends that depart from this theory. These diamonds contain N3 defect centres, which appear to be responsible for this behaviour. It was found in these experiments that, bar thermal expansion effects, the spin-spin relaxation time is essentially independent of temperature. The seventh chapter deals with the solid state and thermal mixing effects. The relevant theory, results obtained and a discussion of these results, are presented. The effect of impurity concentration, defect types, microwave power, the exposure time and the offset from resonance on the polarisation rates and the 13C polarisation are investigated in depth. Finally the effect of applying the DNP treatment on the central and hyperfine lines is discussed. The pulsed DNP process is presented in the eighth chapter. The relevant theory, the effects of matching of the Hartmann-Hahn condition, impurity concentrations and types, on the polarisation rate and signal enhancement of JJC nuclei is given. A comparison to the continuous wave techniques is then made. The ninth chapter summarises the achievements and recommendations for further work. / Physics / D. Phil. (Physics)
194

Dynamic nuclear polarisation of diamond

High, Grant Lysle 08 1900 (has links)
This study is presented in nine chapters as follows: Chapter one reviews the reported literature on the NMR of natural diamond. The NMR signal of diamond consists on a single line at 39 ppm from TMS and two hyperfine lines due to 13C interactions. The reported relaxation times, measured in natural diamond, synthetic diamonds and 13C enriched diamonds, are discussed. The second chapter introduces the apparatus used, which included a Bruker Avance NMR spectrometer, a Bruker ESP380E pulsed EPR spectrometer and a high powersband DNP system. The availability of this excellently equiped laboratory presented a unique opportunity to perform this investigation. Chapter three outlines the experimental techniques used as well as the manner in which the acquired data was processed. The fourth chapter presents an overview of the most common defects found in diamond. Proposed models of these defects are presented and the resulting EPR spectra displayed. The methods developed to determine the paramagnetic impurity concentration from the EPR line width and the spin-spin relaxation times are presented in the fifth chapter. The line width gives the total paramagnetic impurity concentration to about 10 ppm. The spin-spin relaxation time allows the determination of Pl and P2 paramagnetic impurity concentrations individually, to much lower levels from measurements on the central and hyperfine lines. This information was used in the explanation of the relaxation behaviour for the various diamonds investigated. The temperature dependence of the paramagnetic electron relaxation times is reported in the sixth chapter. The results obtained are consistent with the findings in prior work that Pl impurities are typical Jahn Teller centres. Two diamonds, however, display trends that depart from this theory. These diamonds contain N3 defect centres, which appear to be responsible for this behaviour. It was found in these experiments that, bar thermal expansion effects, the spin-spin relaxation time is essentially independent of temperature. The seventh chapter deals with the solid state and thermal mixing effects. The relevant theory, results obtained and a discussion of these results, are presented. The effect of impurity concentration, defect types, microwave power, the exposure time and the offset from resonance on the polarisation rates and the 13C polarisation are investigated in depth. Finally the effect of applying the DNP treatment on the central and hyperfine lines is discussed. The pulsed DNP process is presented in the eighth chapter. The relevant theory, the effects of matching of the Hartmann-Hahn condition, impurity concentrations and types, on the polarisation rate and signal enhancement of JJC nuclei is given. A comparison to the continuous wave techniques is then made. The ninth chapter summarises the achievements and recommendations for further work. / Physics / D. Phil. (Physics)
195

Proton NMR relaxation investigations of particle exfoliation and distribution in polymer/clay nanocomposites

Xu, Bo 17 November 2010 (has links)
In the past two decades polymer/clay nanocomposites (PCNs) have emerged as promising materials that exhibit remarkably improved properties when compared to conventional composites and pristine polymers. Such improvements strongly depend on the dispersion of clay nanoparticles in the polymer matrix. In spite of great efforts expended in characterizing clay dispersion, effective, simple and quantitative techniques are still needed. This work addresses this challenge by presenting new aspects of 1H solid-state NMR for quantifying clay dispersion in PCNs filled with clay containing paramagnetic ions. Employing these 1H solid-state NMR methods, some structure-processing-deformation relationships of PCNs were derived, and basic insights into nuclear relaxation and spin diffusion in PCNs were gained as well. Detailed models and analyses were described for 1H spin-lattice relaxation in the presence of paramagnetic clays in PCNs. Relaxation recovery was analytically correlated to clay dispersion in two ways: one is the initial relaxation recovery which is related to clay surface area, and the other is the spin-lattice relaxation time which is related to interparticle spacing. These two NMR observables were employed to quantitatively observe the evolution of clay morphology in poly(propylene)/clay (PP/MMT) nanocomposites upon equibiaxial stretching, as well as upon in situ uniaxial deformation. The initial relaxation recovery was independently utilized to determine the polymer-clay interfacial surface area and the degree of clay exfoliation. We demonstrated the capabilities of our models in quantitatively characterizing several materials, including poly(vinyl alcohol), nylon 6, poly(å-caprolactone) (PCL), poly(lactic acid) (PLA) and PP nanocomposites. These results were used to examine the dependence of clay morphology upon processing (strain ratio, strain rate, temperature), deformation (extension), component characteristics (polymer molecular weight, clay surface modification) and clay content. Effects of paramagnetic Fe3+ concentration and external magnetic field strength on 1H spin-lattice relaxation in PCNs were also investigated and discussed. In particular, low field separates the initial relaxation recovery into two stages: one related to clay content and the other related to the polymer-clay interfacial surface area. The low field was observed to enhance the paramagnetic contribution to the spin-lattice relaxation rate, increasing its sensitivity to clay morphology. In addition, measurements of long-distance spin diffusion coefficients for a variety of polymers and paramagnetic characteristics of organically modified clay were explored. Overall, the utility of NMR relaxometry in characterizing PCNs has been significantly expanded and successfully demonstrated in this dissertation.
196

Investigation of Protein Structure and Dynamics / Untersuchungen von Proteinstruktur und Proteindynamik

Frank, Benedikt Tobias Carl 15 July 2009 (has links)
No description available.
197

The Advantages Of Paramagnetic NMR

Siepel, Florian 28 October 2013 (has links)
In der Kernspinresonanzspektroskopie (NMR) treten drei Effekte auf, die paramagnetische und diamagnetische Moleküle in isotroper Lösung unterscheiden: residuale dipolare Kopplung (RDC), Pseudokontaktverschiebung (PCS) und paramagnetische Relaxationsverstärkung (PRE). Alle drei Effekte sind abhängig von intermolekularen Winkeln und Abständen und können daher Informationen über die Struktur und Dynamik des Moleküls liefern. Um diese Informationen zu erhalten, muss das Molekül paramagnetische Eigenschaften aufweisen. Eine der heutzutage gebräuchlichen Methoden verwendet kleine molekulare Tags, die paramagnetische Metallionen koordinieren. Die meisten dieser Tags binden über eine Disulfidbrücke an Cysteine an der Proteinoberfläche. Um diese Methode für DNA anzuwenden werden daher neue Taggingstrategien benötigt. Im Rahmen dieser Arbeit wurde eine modifizierte Nukleobase synthetisiert, mit der ein Schwefelatom in die DNA eingebracht werden kann. Diese Methode erlaubt es, jeden Tag an die DNA zu binden, der als Verbindungsmethode eine Disulfidbrücke nutzt. Mit der Nukleobase wird eine Kohlenstoff-Dreifachbindung in die DNA eingefügt und mit Hilfe einer dipolaren Cycloaddition wird die freie Thiolgruppe eingebracht. Die modifizierte Nukleobase wurde erfolgreich an einem selbstkomplementären DNA-Strang (24 Nukleobasen) getestet. Die Nukleobase wurde während der Synthese der DNA eingefügt und der mit Lutetium, Terbium oder Thulium vorbeladene Cys-Ph-TAHA Tag wurde über eine Disulfidbrücke an die DNA gebunden. Die Beladung des Tags und die Taggingreaktion verliefen hierbei quantitativ. Nach diesem Erfolg war es ein Hauptaspekt dieser Arbeit, eine verlässliche und reproduzierbare Aufreinigungs- und Probenvorbereitungsmethode zu entwickeln. Diesem Punkt kommt besondere Bedeutung zu, da das Phosphatrückgrat der DNA, im Gegensatz zu Proteinen, Metallionen koordinieren kann. Im Theorieteil dieser Arbeit ist eine komplette Herleitung der drei Hauptmerkmale paramagnetischer NMR gegeben. Diese Herleitung beginnt bei Grundbegriffen des Magnetismus und neben den Gleichungen für RDCs, PCSs und PREs werden Ausdrücke für den dipolaren Hamiltonoperator, Kreuzrelaxationsraten, kreuzkorrelierte Relaxationsraten, durch Alignment induzierte RDCs, Korrelationsfunktionen und spektrale Dichten gegeben. Das zweite Thema dieser Arbeit basiert auf einem weiteren paramagnetischen Effekt. Um der reduzierten Empfindlichkeit der Kernspinresonanzspektroskopie verglichen mit anderen Spektroskopiemethoden entgegenzuwirken, wurden viele Methoden entwickelt, die auf eine Erhöhung der Polarisierung der Atomkerne zielen, d.h. um sogenannte hyperpolarisierte Kerne zu erzeugen. Eine dieser Methoden, die photochemisch erzeugte dynamische Kernpolarisierung (photo CIDNP), basiert auf kurzlebigen Radikalen, die durch direkte Laserbestrahlung der Probe im Magneten erzeugt werden. Im Rahmen dieser Arbeit wurde ein photo CIDNP Aufbau entworfen, gebaut und getestet. Die ersten Experimente und Resultate mit Triethylendiamin, L-Tyrosin und 3-Fluor-L-tyrosin zeigen die Vorteile und Grenzen dieser Methode auf. Für 3-Fluor-L-tyrosin wurde eine komplette Analyse des Relaxationsverhaltens, einschließlich der Kreuzrelaxation und der kreuzkorrelierten Relaxation, durchgeführt.
198

Electronic relaxation in Co(II) single-ion magnets and spin-crossover systems

Kumarage, Nuwanthika Dilrukshi 04 April 2022 (has links)
No description available.
199

The development of proton detection based paramagnetic solid-state NMR methods as a general structural biology tool

Thomas, Justin K 24 October 2022 (has links)
No description available.
200

Analysis of free radical characteristics in biological systems based on EPR spectroscopy, employing blind source separation techniques

Ren, Jiyun., 任紀韞. January 2006 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy

Page generated in 0.0743 seconds