1 |
Regularization properties of the discrepancy principle for Tikhonov regularization in Banach spacesAnzengruber, Stephan W., Hofmann, Bernd, Mathé, Peter 11 December 2012 (has links) (PDF)
The stable solution of ill-posed non-linear operator equations in Banach space requires regularization. One important approach is based on Tikhonov regularization, in which case a one-parameter family of regularized solutions is obtained. It is crucial to choose the parameter appropriately. Here, a variant of the discrepancy principle is analyzed. In many cases such parameter choice exhibits the feature, called regularization property below, that the chosen parameter tends to zero as the noise tends to zero, but slower than the noise level. Here we shall show such regularization property under two natural assumptions. First, exact penalization must be excluded, and secondly, the discrepancy principle must stop after a finite number of iterations. We conclude this study with a discussion of some consequences for convergence rates obtained by the discrepancy principle under the validity of some kind of variational inequality, a recent tool for the analysis of inverse problems.
|
2 |
Regularization properties of the discrepancy principle for Tikhonov regularization in Banach spaces: Regularization properties of the discrepancy principle for Tikhonov regularization in Banach spacesAnzengruber, Stephan W., Hofmann, Bernd, Mathé, Peter January 2012 (has links)
The stable solution of ill-posed non-linear operator equations in Banach space requires regularization. One important approach is based on Tikhonov regularization, in which case a one-parameter family of regularized solutions is obtained. It is crucial to choose the parameter appropriately. Here, a variant of the discrepancy principle is analyzed. In many cases such parameter choice exhibits the feature, called regularization property below, that the chosen parameter tends to zero as the noise tends to zero, but slower than the noise level. Here we shall show such regularization property under two natural assumptions. First, exact penalization must be excluded, and secondly, the discrepancy principle must stop after a finite number of iterations. We conclude this study with a discussion of some consequences for convergence rates obtained by the discrepancy principle under the validity of some kind of variational inequality, a recent tool for the analysis of inverse problems.
|
Page generated in 0.0874 seconds