Spelling suggestions: "subject:"korrekt gestellten deproblem"" "subject:"korrekt gestellten 3dproblem""
1 |
Inverse problems with sparsity constraints convergence rates and exact recoveryTrede, Dennis January 2010 (has links)
Zugl.: Bremen, Univ., Diss., 2010
|
2 |
Untersuchungen zum phänomenologischen Ansatz der Dielektrizitätsfunktion polarer amorpher Systeme oder die Regularisierung eines exponentiell schlecht gestellten ProblemsRosenberg, Magnus Frank. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Dortmund.
|
3 |
Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen GitternGarcke, Jochen. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Bonn.
|
4 |
On the Influence of Multiplication Operators on the Ill-posedness of Inverse Problems / Zum Einfluss von Multiplikationsoperatoren auf die Inkorrektheit Inverser ProblemeFreitag, Melina 28 October 2004 (has links) (PDF)
In this thesis we deal with the degree of ill-posedness of linear operator equations in Hilbert spaces, where the operator may be decomposed into a compact linear integral operator with a well-known decay rate of singular values and a multiplication operator.
This case occurs for example for nonlinear operator equations, where the local degree of ill-posedness is investigated via the
Frechet derivative.
If the multiplier function has got zeroes, the determination of the local degree of ill-posedness is not trivial. We are going to investigate this situation, provide analytical tools as well as their limitations. By using several numerical
approaches for computing the singular values of the operator we find that the degree of ill-posedness does not change through those multiplication operators. We even provide a conjecture, verified by several numerical studies, how these multiplication operators influence the singular values of the operator equation.
Finally we analyze the influence of those multiplication operators on the opportunities of Tikhonov regularization and corresponding convergence rates. In this context we also provide a short summary on the relationship between
nonlinear problems and their linearizations. / Diese Arbeit beschaeftigt sich mit dem Grad der Inkorrektheit linearer Operatorgleichungen in Hilbertraeumen, die sich als Komposition eines vollstetigen linearen Integraloperators mit bekannter Abklingrate der Singulaerwerte und eines Multiplikationsoperators darstellen lassen.
Dieser Fall tritt beispielsweise bei nichtlinearen Operatorgleichungen auf, wobei der lokale Inkorrektheitsgrad ueber die Frechetableitung bestimmt wird.
Falls die Multiplikatorfunktion Nullstellen hat, so ist die Bestimmung des lokalen Grades der Inkorrektheit nicht einfach. Moeglichkeiten und Grenzen der Analysis fuer diese Situation werden betrachtet.
Unterschiedliche numerische Ansaetze fuer die Bestimmung der Singulaerwerte liefern, dass der Grad der Inkorrektheit durch die Multiplikationsoperatoren nicht veraendert wird.
Es wird sogar ein Zusammenhang angegeben, wie Multiplikationsoperatoren die Singulaerwerte beeinflussen.
Schliesslich werden Moeglichkeiten der Tikhonov-Regularisierung unter Einfluss der Multiplikationsoperatoren untersucht. In diesem Zusammenhang wird auch eine kurze Zusammenfassung zur Beziehung von nichtlinearen Problemen und ihren Linearisierungen gegeben.
|
5 |
On variational methods and gradient flows in image processingDroske, Marc. Unknown Date (has links) (PDF)
Essen, University, Diss., 2005--Duisburg.
|
6 |
Regularization properties of the discrepancy principle for Tikhonov regularization in Banach spacesAnzengruber, Stephan W., Hofmann, Bernd, Mathé, Peter 11 December 2012 (has links) (PDF)
The stable solution of ill-posed non-linear operator equations in Banach space requires regularization. One important approach is based on Tikhonov regularization, in which case a one-parameter family of regularized solutions is obtained. It is crucial to choose the parameter appropriately. Here, a variant of the discrepancy principle is analyzed. In many cases such parameter choice exhibits the feature, called regularization property below, that the chosen parameter tends to zero as the noise tends to zero, but slower than the noise level. Here we shall show such regularization property under two natural assumptions. First, exact penalization must be excluded, and secondly, the discrepancy principle must stop after a finite number of iterations. We conclude this study with a discussion of some consequences for convergence rates obtained by the discrepancy principle under the validity of some kind of variational inequality, a recent tool for the analysis of inverse problems.
|
7 |
On the Influence of Multiplication Operators on the Ill-posedness of Inverse Problems: Zum Einfluss von Multiplikationsoperatoren auf die Inkorrektheit Inverser ProblemeFreitag, Melina 03 September 2004 (has links)
In this thesis we deal with the degree of ill-posedness of linear operator equations in Hilbert spaces, where the operator may be decomposed into a compact linear integral operator with a well-known decay rate of singular values and a multiplication operator.
This case occurs for example for nonlinear operator equations, where the local degree of ill-posedness is investigated via the
Frechet derivative.
If the multiplier function has got zeroes, the determination of the local degree of ill-posedness is not trivial. We are going to investigate this situation, provide analytical tools as well as their limitations. By using several numerical
approaches for computing the singular values of the operator we find that the degree of ill-posedness does not change through those multiplication operators. We even provide a conjecture, verified by several numerical studies, how these multiplication operators influence the singular values of the operator equation.
Finally we analyze the influence of those multiplication operators on the opportunities of Tikhonov regularization and corresponding convergence rates. In this context we also provide a short summary on the relationship between
nonlinear problems and their linearizations. / Diese Arbeit beschaeftigt sich mit dem Grad der Inkorrektheit linearer Operatorgleichungen in Hilbertraeumen, die sich als Komposition eines vollstetigen linearen Integraloperators mit bekannter Abklingrate der Singulaerwerte und eines Multiplikationsoperators darstellen lassen.
Dieser Fall tritt beispielsweise bei nichtlinearen Operatorgleichungen auf, wobei der lokale Inkorrektheitsgrad ueber die Frechetableitung bestimmt wird.
Falls die Multiplikatorfunktion Nullstellen hat, so ist die Bestimmung des lokalen Grades der Inkorrektheit nicht einfach. Moeglichkeiten und Grenzen der Analysis fuer diese Situation werden betrachtet.
Unterschiedliche numerische Ansaetze fuer die Bestimmung der Singulaerwerte liefern, dass der Grad der Inkorrektheit durch die Multiplikationsoperatoren nicht veraendert wird.
Es wird sogar ein Zusammenhang angegeben, wie Multiplikationsoperatoren die Singulaerwerte beeinflussen.
Schliesslich werden Moeglichkeiten der Tikhonov-Regularisierung unter Einfluss der Multiplikationsoperatoren untersucht. In diesem Zusammenhang wird auch eine kurze Zusammenfassung zur Beziehung von nichtlinearen Problemen und ihren Linearisierungen gegeben.
|
8 |
Identification in Financial Models with Time-Dependent Volatility and Stochastic Drift ComponentsKrämer, Romy 15 June 2007 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Parameteridentifikation in finanzmathematischen Modellen, welche sich durch eine zeitabhängige Volatilitätsfunktion und stochastische Driftkomponente auszeichnen.
Als Referenzmodell wird eine Variante des Bivariaten Ornstein-Uhlenbeck-Modells
betrachtet.
Ziel ist es, die zeitabhängige Volatilitätsfunktion sowohl in der Vergangenheit
als auch für ein kleines zukünftiges Zeitintervall zu identifizieren. Weiterhin sollen einige reellwertige
Parameter, welche die stochastische Drift beschreiben, bestimmt werden.
Dabei steht nicht die Anpassung des betrachteten Modells an reale
Aktienpreisdaten im Vordergrund sondern eine mathematische Untersuchung der
Chancen und Risiken der betrachteten Schätzverfahren.
Als Daten können Aktienpreise und Optionspreise beobachtet werden.
Aus hochfrequenten Aktienpreisdaten wird mittels Wavelet-Projektion
die (quadrierte) Volatilitätsfunktion auf einem vergangenen
Zeitintervall geschätzt.
Mit der so bestimmten Volatilitätsfunktion und einigen Aktienpreisen können anschließend die
reellwertigen Parameter mit Hilfe der Maximum-Likelihood-Methode bestimmt werden, wobei die Likelihoodfunktion mit Hilfe des Kalman Filters berechnet
werden kann.
Die Identifikation der Volatilitätsfunktion (oder abgeleiteter Größen) auf dem
zukünftigen Zeitintervall aus Optionspreisen führt auf ein inverses Problem des Option Pricings,
welches in ein äußeres nichtlineares und ein inneres lineares Problem zerlegt
werden kann. Das innere Problem (die Identifikation einer Ableitung) ist ein
Standardbeispielfür ein inkorrektes inverses Problem, d.h. die Lösung dieses
Problems hängt nicht stetig von den Daten ab. Anhand von analytischen
Untersuchungen von Nemytskii-Operatoren und deren Inversen wird in der Arbeit
gezeigt, dass das äußere Problem gut gestellt aber in einigen Fällen schlecht konditioniert ist. Weiterhin wird ein
Algorithmus für die schnelle Lösung des äußeren Problems unter Einbeziehung der
Monotonieinformationen vorgeschlagen.
Alle in der Arbeit diskutierten Verfahren werden anhand von numerischen Fallstudien illustriert.
|
9 |
Facetten der Konvergenztheorie regularisierter Lösungen im Hilbertraum bei A-priori-ParameterwahlSchieck, Matthias 22 April 2010 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Konvergenztheorie für die regularisierten Lösungen inkorrekter inverser Probleme bei
A-priori-Parameterwahl im Hilbertraum. Zunächst werden bekannte Konvergenzratenresultate basierend auf verallgemeinerten Quelldarstellungen systematisch
zusammengetragen. Danach wird sich mit dem Fall befasst, was getan werden kann, wenn solche Quellbedingungen nicht erfüllt sind. Man gelangt
zur Analysis von Abstandsfunktionen, mit deren Hilfe ebenfalls Konvergenzraten ermittelt werden können. Praktisch wird eine solche
Abstandsfunktion anhand der Betrachtung einer Fredholmschen Integralgleichung 2. Art abgeschätzt. Schließlich werden die Zusammenhänge zwischen
bedingter Stabilität, Stetigkeitsmodul und Konvergenzraten erörtert und durch ein Beispiel zur Laplace-Gleichung untermauert. / This dissertation deals with the convergence theory of regularized solutions
of ill-posed inverse problems in Hilbert space with a priori parameter choice.
First, well-known convergence rate results based
on general source conditions are brought together systematically. Then
it is studied what can be done if such source conditions
are not fulfilled. One arrives at the analysis
of distance functions. With their help, convergence
rates can be determined, too. As an example, a distance function is calculated by
solving a Fredholm integral equation of the second kind. Finally, the cross-connections
between conditional stability, the modulus of continuity and
convergence rates is treated accompanied with an example
concerning the Laplace equation.
|
10 |
Identification of material parameters in mechanical modelsMeyer, Marcus 04 June 2010 (has links) (PDF)
Die Dissertation beschäftigt sich mit
Parameteridentifikationsproblemen, wie sie häufig in
Fragestellungen der Festkörpermechanik zu finden sind. Hierbei
betrachten wir die Identifikation von Materialparametern -- die
typischerweise die Eigenschaften der zugrundeliegenden
Materialien repräsentieren -- aus gemessenen Verformungen oder
Belastungen eines Testkörpers. In mathematischem Sinne
entspricht dies der Lösung von Identifikationsproblemen, die
eine spezielle Klasse von inversen Problemen bilden.
Der Inhalt der Dissertation ist folgendermaßen gegliedert. Nach
dem einführenden Abschnitt 1 wird in Abschnitt 2 ein Überblick
von Optimierungs- und Regularisierungsverfahren zur stabilen
Lösung nichtlinearer inverser Probleme diskutiert. In Abschnitt
3 betrachten wir die Identifikation von skalaren und stückweise
konstanten Parametern in linearen elliptischen
Differentialgleichungen. Hierbei werden zwei Testprobleme
erörtert, die Identifikation von Diffusions- und
Reaktionsparameter in einer allgemeinen elliptischen
Differentialgleichung und die Identifikation der
Lame-Konstanten in einem Modell der linearisierten Elastizität.
Die zugrunde liegenden PDE-Modelle und Lösungszugänge werden
erläutert. Insbesondere betrachten wir hier Newton-artige
Algorithmen, Gradientenmethoden, Multi-Parameter
Regularisierung and den evolutionären Algorithmus CMAES.
Abschließend werden Ergebnisse einer numerischen Studie
präsentiert. Im Abschnitt 4 konzentrieren wir uns auf die
Identifikation von verteilten Parametern in hyperelastischen
Materialmodellen. Das nichtlineare Elastizitätsproblem wird
detailiert erläutert und verschiedene Materialmodelle werden
diskutiert (linear elastisches St.-Venant-Kirchhoff Material
und nichtlineare Neo-Hooke, Mooney-Rivlin und Modified-Fung
Materialien. Zur Lösung des resultierenden
Parameteridentifikationsproblems werden Lösungsansätze aus der
optimalen Steuerung in Form eines Newton-Lagrange SQP
Algorithmus verwendet. Die Resultate einer numerischen Studie
werden präsentiert, basierend auf einem zweidimensionales
Testproblem mit einer sogenannten Cook-Mebran. Abschließend
wird im Abschnitt 5 die Verwendung adaptiver FEM für die Lösung
von Parameteridentifikationsproblems kurz erörtert. / The dissertation is focussed on parameter identification
problems arising in the context of structural mechanics. At
this, we consider the identification of material parameters -
which typically represent the properties of an underlying
material - from given measured displacements and forces of a
loaded test body. In mathematical terms such problems denote
identification problems as a special case of general inverse
problems.
The dissertation is organized as follows. After the
introductive section 1, section 2 is devoted to a survey of
optimization and regularization methods for the stable solution
of nonlinear inverse problems. In section 3 we consider the
identification of scalar and piecewise constant parameters in
linear elliptic differential equations and examine two test
problems, namely the identification of diffusion and reaction
parameters in a generalized linear elliptic differential
equation of second order and the identification of the Lame
constants in the linearized elasticity model. The underlying
PDE models are introduced and solution approaches are discussed
in detail. At this, we consider Newton-type algorithms,
gradient methods, multi-parameter regularization, and the
evolutionary algorithm CMAES. Consequently, numerical studies
for a two-dimensional test problem are presented. In section 4
we point out the identification of distributed material
parameters in hyperelastic deformation models. The nonlinear
elasticity boundary value problem for large deformations is
introduced. We discuss several material laws for linear elastic
(St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke,
Mooney-Rivlin, and Modified-Fung materials. For the solution of
the corresponding parameter identification problem, we focus on
an optimal control solution approach and introduce a
regularized Newton-Lagrange SQP method. The Newton-Lagrange
algorithm is demonstrated within a numerical study. Therefore,
a simplified two-dimensional Cook membrane test problem is
solved. Additionally, in section 5 the application of adaptive
methods for the solution of parameter identification problems
is discussed briefly.
|
Page generated in 0.0932 seconds