• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of material parameters in mechanical models

Meyer, Marcus 04 June 2010 (has links) (PDF)
Die Dissertation beschäftigt sich mit Parameteridentifikationsproblemen, wie sie häufig in Fragestellungen der Festkörpermechanik zu finden sind. Hierbei betrachten wir die Identifikation von Materialparametern -- die typischerweise die Eigenschaften der zugrundeliegenden Materialien repräsentieren -- aus gemessenen Verformungen oder Belastungen eines Testkörpers. In mathematischem Sinne entspricht dies der Lösung von Identifikationsproblemen, die eine spezielle Klasse von inversen Problemen bilden. Der Inhalt der Dissertation ist folgendermaßen gegliedert. Nach dem einführenden Abschnitt 1 wird in Abschnitt 2 ein Überblick von Optimierungs- und Regularisierungsverfahren zur stabilen Lösung nichtlinearer inverser Probleme diskutiert. In Abschnitt 3 betrachten wir die Identifikation von skalaren und stückweise konstanten Parametern in linearen elliptischen Differentialgleichungen. Hierbei werden zwei Testprobleme erörtert, die Identifikation von Diffusions- und Reaktionsparameter in einer allgemeinen elliptischen Differentialgleichung und die Identifikation der Lame-Konstanten in einem Modell der linearisierten Elastizität. Die zugrunde liegenden PDE-Modelle und Lösungszugänge werden erläutert. Insbesondere betrachten wir hier Newton-artige Algorithmen, Gradientenmethoden, Multi-Parameter Regularisierung and den evolutionären Algorithmus CMAES. Abschließend werden Ergebnisse einer numerischen Studie präsentiert. Im Abschnitt 4 konzentrieren wir uns auf die Identifikation von verteilten Parametern in hyperelastischen Materialmodellen. Das nichtlineare Elastizitätsproblem wird detailiert erläutert und verschiedene Materialmodelle werden diskutiert (linear elastisches St.-Venant-Kirchhoff Material und nichtlineare Neo-Hooke, Mooney-Rivlin und Modified-Fung Materialien. Zur Lösung des resultierenden Parameteridentifikationsproblems werden Lösungsansätze aus der optimalen Steuerung in Form eines Newton-Lagrange SQP Algorithmus verwendet. Die Resultate einer numerischen Studie werden präsentiert, basierend auf einem zweidimensionales Testproblem mit einer sogenannten Cook-Mebran. Abschließend wird im Abschnitt 5 die Verwendung adaptiver FEM für die Lösung von Parameteridentifikationsproblems kurz erörtert. / The dissertation is focussed on parameter identification problems arising in the context of structural mechanics. At this, we consider the identification of material parameters - which typically represent the properties of an underlying material - from given measured displacements and forces of a loaded test body. In mathematical terms such problems denote identification problems as a special case of general inverse problems. The dissertation is organized as follows. After the introductive section 1, section 2 is devoted to a survey of optimization and regularization methods for the stable solution of nonlinear inverse problems. In section 3 we consider the identification of scalar and piecewise constant parameters in linear elliptic differential equations and examine two test problems, namely the identification of diffusion and reaction parameters in a generalized linear elliptic differential equation of second order and the identification of the Lame constants in the linearized elasticity model. The underlying PDE models are introduced and solution approaches are discussed in detail. At this, we consider Newton-type algorithms, gradient methods, multi-parameter regularization, and the evolutionary algorithm CMAES. Consequently, numerical studies for a two-dimensional test problem are presented. In section 4 we point out the identification of distributed material parameters in hyperelastic deformation models. The nonlinear elasticity boundary value problem for large deformations is introduced. We discuss several material laws for linear elastic (St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke, Mooney-Rivlin, and Modified-Fung materials. For the solution of the corresponding parameter identification problem, we focus on an optimal control solution approach and introduce a regularized Newton-Lagrange SQP method. The Newton-Lagrange algorithm is demonstrated within a numerical study. Therefore, a simplified two-dimensional Cook membrane test problem is solved. Additionally, in section 5 the application of adaptive methods for the solution of parameter identification problems is discussed briefly.
2

A Homogenized Bending Theory for Prestrained Plates

Böhnlein, Klaus, Neukamm, Stefan, Padilla-Garza, David, Sander, Oliver 22 February 2024 (has links)
The presence of prestrain can have a tremendous effect on the mechanical behavior of slender structures. Prestrained elastic plates show spontaneous bending in equilibrium—a property that makes such objects relevant for the fabrication of active and functionalmaterials. In this paperwe studymicroheterogeneous, prestrained plates that feature non-flat equilibriumshapes. Our goal is to understand the relation between the properties of the prestrained microstructure and the global shape of the plate in mechanical equilibrium. To this end, we consider a three-dimensional, nonlinear elasticity model that describes a periodic material that occupies a domain with small thickness. We consider a spatially periodic prestrain described in the form of a multiplicative decomposition of the deformation gradient.By simultaneous homogenization and dimension reduction, we rigorously derive an effective plate model as a Γ-limit for vanishing thickness and period. That limit has the form of a nonlinear bending energy with an emergent spontaneous curvature term. The homogenized properties of the bending model (bending stiffness and spontaneous curvature) are characterized by corrector problems. For a model composite—a prestrained laminate composed of isotropic materials—we investigate the dependence of the homogenized properties on the parameters of the model composite. Secondly, we investigate the relation between the parameters of the model composite and the set of shapes with minimal bending energy. Our study reveals a rather complex dependence of these shapes on the composite parameters. For instance, the curvature and principal directions of these shapes depend on the parameters in a nonlinear and discontinuous way; for certain parameter regions we observe uniqueness and non-uniqueness of the shapes. We also observe size effects: The geometries of the shapes depend on the aspect ratio between the plate thickness and the composite period. As a second application of our theory, we study a problem of shape programming: We prove that any target shape (parametrized by a bending deformation) can be obtained (up to a small tolerance) as an energy minimizer of a composite plate, which is simple in the sense that the plate consists of only finitely many grains that are filled with a parametrized composite with a single degree of freedom.
3

Bending models of nematic liquid crystal elastomers: Gamma-convergence results in nonlinear elasticity

Griehl, Max 22 May 2024 (has links)
We consider thin bodies made from elastomers and nematic liquid crystal elastomers. Starting from a nonlinear 3d hyperelastic model, and using the Gamma-convergence method, we derive lower dimensional models for 2d and 1d. The limit models describe the interplay between free liquid crystal orientations and bending deformations.:1 Introduction 1.1 Main results and structure of the text 1.2 Survey of the literature 1.2.1 Dimension reduction in nonlinear elasticity 1.2.2 Relation to other bending regime results in detail 1.2.3 Relation to other Gamma-convergence results of LCEs 2 Liquid crystal elastomers 2.1 Properties 2.2 Modeling 3 Rods 3.1 Setup and statement of analytical main results 3.1.1 The 3d-model and assumptions 3.1.2 The effective 1d-model 3.1.3 The Gamma-convergence result without boundary conditions 3.1.4 Boundary conditions for y 3.1.5 Weak and strong anchoring of n 3.1.6 Definition and properties of the effective coefficients 3.2 Numerical 1d-model exploration 3.3 Dimensional analysis and scalings 3.3.1 Non-dimensionalization and rescaling 3.3.2 Scaling assumptions 3.3.3 Dimensional analysis and applicability of the 1d-model 3.4 Smooth approximation of framed curves 3.5 Proofs 3.5.1 Compactness: proofs of Theorem 3.1.3 (a) and Proposition 3.1.4 (a) 3.5.2 Lower bound: proof of Theorem 3.1.3 (b) . . . . . . . . . . . . 68 3.5.3 Upper bound: proofs of Theorem 3.1.3 (c) and Proposition 3.1.4 (b) 3.5.4 Anchoring: proof of Proposition 3.1.5 3.5.5 Properties of the effective coefficients 4 Plates 4.1 Setup and statement of analytical main results 4.1.1 The 3d-model and assumptions 4.1.2 The effective 2d-model 4.1.3 The Gamma-convergence result without boundary conditions 4.1.4 Definition and properties of the effective coefficients 4.1.5 Boundary conditions for y 4.1.6 Weak and strong anchoring of n 4.2 Analytical and numerical 2d-model exploration 4.2.1 Analytical 2d-model exploration 4.2.2 Numerical 2d-model exploration 4.3 Dimensional analysis and scalings 4.3.1 Non-dimensionalization and rescaling 4.3.2 Scaling assumptions 4.3.3 Dimensional analysis and applicability 4.4 Geometry and approximation of bending deformations 4.4.1 Proofs of the geometric properties in the smooth case 4.4.2 Proof for the smooth approximations 4.5 Proofs 4.5.1 Compactness: proofs of Theorems 4.1.1 (a) and 4.1.8 (a) 4.5.2 Lower bound: proof of Theorem 4.1.1 (b) 4.5.3 Upper bound: proofs of Theorem 4.1.1 (c) and Theorem 4.1.8 (b) 4.5.4 Properties of the effective coefficients 4.5.5 Anchorings 4.5.6 Approximation of nonlinear strains: proof of Proposition 4.5.4 5 Conclusions and outlooks Bibliography
4

Identification of material parameters in mechanical models

Meyer, Marcus 04 June 2010 (has links)
Die Dissertation beschäftigt sich mit Parameteridentifikationsproblemen, wie sie häufig in Fragestellungen der Festkörpermechanik zu finden sind. Hierbei betrachten wir die Identifikation von Materialparametern -- die typischerweise die Eigenschaften der zugrundeliegenden Materialien repräsentieren -- aus gemessenen Verformungen oder Belastungen eines Testkörpers. In mathematischem Sinne entspricht dies der Lösung von Identifikationsproblemen, die eine spezielle Klasse von inversen Problemen bilden. Der Inhalt der Dissertation ist folgendermaßen gegliedert. Nach dem einführenden Abschnitt 1 wird in Abschnitt 2 ein Überblick von Optimierungs- und Regularisierungsverfahren zur stabilen Lösung nichtlinearer inverser Probleme diskutiert. In Abschnitt 3 betrachten wir die Identifikation von skalaren und stückweise konstanten Parametern in linearen elliptischen Differentialgleichungen. Hierbei werden zwei Testprobleme erörtert, die Identifikation von Diffusions- und Reaktionsparameter in einer allgemeinen elliptischen Differentialgleichung und die Identifikation der Lame-Konstanten in einem Modell der linearisierten Elastizität. Die zugrunde liegenden PDE-Modelle und Lösungszugänge werden erläutert. Insbesondere betrachten wir hier Newton-artige Algorithmen, Gradientenmethoden, Multi-Parameter Regularisierung and den evolutionären Algorithmus CMAES. Abschließend werden Ergebnisse einer numerischen Studie präsentiert. Im Abschnitt 4 konzentrieren wir uns auf die Identifikation von verteilten Parametern in hyperelastischen Materialmodellen. Das nichtlineare Elastizitätsproblem wird detailiert erläutert und verschiedene Materialmodelle werden diskutiert (linear elastisches St.-Venant-Kirchhoff Material und nichtlineare Neo-Hooke, Mooney-Rivlin und Modified-Fung Materialien. Zur Lösung des resultierenden Parameteridentifikationsproblems werden Lösungsansätze aus der optimalen Steuerung in Form eines Newton-Lagrange SQP Algorithmus verwendet. Die Resultate einer numerischen Studie werden präsentiert, basierend auf einem zweidimensionales Testproblem mit einer sogenannten Cook-Mebran. Abschließend wird im Abschnitt 5 die Verwendung adaptiver FEM für die Lösung von Parameteridentifikationsproblems kurz erörtert. / The dissertation is focussed on parameter identification problems arising in the context of structural mechanics. At this, we consider the identification of material parameters - which typically represent the properties of an underlying material - from given measured displacements and forces of a loaded test body. In mathematical terms such problems denote identification problems as a special case of general inverse problems. The dissertation is organized as follows. After the introductive section 1, section 2 is devoted to a survey of optimization and regularization methods for the stable solution of nonlinear inverse problems. In section 3 we consider the identification of scalar and piecewise constant parameters in linear elliptic differential equations and examine two test problems, namely the identification of diffusion and reaction parameters in a generalized linear elliptic differential equation of second order and the identification of the Lame constants in the linearized elasticity model. The underlying PDE models are introduced and solution approaches are discussed in detail. At this, we consider Newton-type algorithms, gradient methods, multi-parameter regularization, and the evolutionary algorithm CMAES. Consequently, numerical studies for a two-dimensional test problem are presented. In section 4 we point out the identification of distributed material parameters in hyperelastic deformation models. The nonlinear elasticity boundary value problem for large deformations is introduced. We discuss several material laws for linear elastic (St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke, Mooney-Rivlin, and Modified-Fung materials. For the solution of the corresponding parameter identification problem, we focus on an optimal control solution approach and introduce a regularized Newton-Lagrange SQP method. The Newton-Lagrange algorithm is demonstrated within a numerical study. Therefore, a simplified two-dimensional Cook membrane test problem is solved. Additionally, in section 5 the application of adaptive methods for the solution of parameter identification problems is discussed briefly.

Page generated in 0.0671 seconds