• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic partial differential and integro-differential equations

Dareiotis, Anastasios Constantinos January 2015 (has links)
In this work we present some new results concerning stochastic partial differential and integro-differential equations (SPDEs and SPIDEs) that appear in non-linear filtering. We prove existence and uniqueness of solutions of SPIDEs, we give a comparison principle and we suggest an approximation scheme for the non-local integral operators. Regarding SPDEs, we use techniques motivated by the work of De Giorgi, Nash, and Moser, in order to derive global and local supremum estimates, and a weak Harnack inequality.
2

Finite Difference Schemes for Option Pricing under Stochastic Volatility and Lévy Processes: Numerical Analysis and Computing

El-Fakharany, Mohamed Mostafa Refaat 29 July 2015 (has links)
[EN] In the stock markets, the process of estimating a fair price for a stock, option or commodity is consider the corner stone for this trade. There are several attempts to obtain a suitable mathematical model in order to enhance the estimation process for evaluating the options for short or long periods. The Black-Scholes partial differential equation (PDE) and its analytical solution, 1973, are considered a breakthrough in the mathematical modeling for the stock markets. Because of the ideal assumptions of Black-Scholes several alternatives have been developed to adequate the models to the real markets. Two strategies have been done to capture these behaviors; the first modification is to add jumps into the asset following Lévy processes, leading to a partial integro-differential equation (PIDE); the second is to allow the volatility to evolve stochastically leading to a PDE with two spatial variables. Here in this work, we solve numerically PIDEs for a wide class of Lévy processes using finite difference schemes for European options and also, the associated linear complementarity problem (LCP) for American option. Moreover, the models for options under stochastic volatility incorporated with jump-diffusion are considered. Numerical analysis for the proposed schemes is studied since it is the efficient and practical way to guarantee the convergence and accuracy of numerical solutions. In fact, without numerical analysis, careless computations may waste good mathematical models. This thesis consists of four chapters; the first chapter is an introduction containing historically review for stochastic processes, Black-Scholes equation and preliminaries on numerical analysis. Chapter two is devoted to solve the PIDE for European option under CGMY process. The PIDE for this model is solved numerically using two distinct discretization approximations; the first approximation guarantees unconditionally consistency while the second approximation provides unconditional positivity and stability. In the first approximation, the differential part is approximated using the explicit scheme and the integral part is approximated using the trapezoidal rule. In the second approximation, the differential part is approximated using the Patankar-scheme and the integral part is approximated using the four-point open type formula. Chapter three provides a unified treatment for European and American options under a wide class of Lévy processes as CGMY, Meixner and Generalized Hyperbolic. First, the reaction and convection terms of the differential part of the PIDE are removed using appropriate mathematical transformation. The differential part for European case is explicitly discretized , while the integral part is approximated using Laguerre-Gauss quadrature formula. Numerical properties such as positivity, stability and consistency for this scheme are studied. For the American case, the differential part of the LCP is discretized using a three-time level approximation with the same integration technique. Next, the Projected successive over relaxation and multigrid techniques have been implemented to obtain the numerical solution. Several numerical examples are given including discussion of the errors and computational cost. Finally in Chapter four, the PIDE for European option under Bates model is considered. Bates model combines both stochastic volatility and jump diffusion approaches resulting in a PIDE with a mixed derivative term. Since the presence of cross derivative terms involves the existence of negative coefficient terms in the numerical scheme deteriorating the quality of the numerical solution, the mixed derivative is eliminated using suitable mathematical transformation. The new PIDE is solved numerically and the numerical analysis is provided. Moreover, the LCP for American option under Bates model is studied. / [ES] El proceso de estimación del precio de una acción, opción u otro derivado en los mercados de valores es objeto clave de estudio de las matemáticas financieras. Se pueden encontrar diversas técnicas para obtener un modelo matemático adecuado con el fin de mejorar el proceso de valoración de las opciones para periodos cortos o largos. Históricamente, la ecuación de Black-Scholes (1973) fue un gran avance en la elaboración de modelos matemáticos para los mercados de valores. Es un modelo práctico para estimar el valor razonable de una opción. Sobre unos supuestos determinados, F. Black y M. Scholes obtuvieron una ecuación diferencial parcial lineal y su solución analítica. Desde entonces se han desarrollado modelos más complejos para adecuarse a la realidad de los mercados. Un tipo son los modelos con volatilidad estocástica que vienen descritos por una ecuación en derivadas parciales con dos variables espaciales. Otro enfoque consiste en añadir saltos en el precio del subyacente por medio de modelos de Lévy lo que lleva a resolver una ecuación integro-diferencial parcial (EIDP). En esta memoria se aborda la resolución numérica de una amplia clase de modelos con procesos de Lévy. Se desarrollan esquemas en diferencias finitas para opciones europeas y también para opciones americanas con su problema de complementariedad lineal (PCL) asociado. Además se tratan modelos con volatilidad estocástica incorporando difusión con saltos. Se plantea el análisis numérico ya que es el camino eficiente y práctico para garantizar la convergencia y precisión de las soluciones numéricas. De hecho, la ausencia de análisis numérico debilita un buen modelo matemático. Esta memoria está organizada en cuatro capítulos. El primero es una introducción con un breve repaso de los procesos estocásticos, el modelo de Black-Scholes así como nociones preliminares de análisis numérico. En el segundo capítulo se trata la EIDP para las opciones europeas según el modelo CGMY. Se proponen dos esquemas en diferencias finitas; el primero garantiza consistencia incondicional de la solución mientras que el segundo proporciona estabilidad y positividad incondicionales. Con el primer enfoque, la parte diferencial se discretiza por medio de un esquema explícito y para la parte integral se usa la regla del trapecio. En la segunda aproximación, para la parte diferencial se usa un esquema tipo Patankar y la parte integral se aproxima por medio de la fórmula de tipo abierto con cuatro puntos. En el capítulo tercero se propone un tratamiento unificado para una amplia clase de modelos de opciones en procesos de Lévy como CGMY, Meixner e hiperbólico generalizado. Se eliminan los términos de reacción y convección por medio de un apropiado cambio de variables. Después la parte diferencial se aproxima por un esquema explícito mientras que para la parte integral se usa la fórmula de cuadratura de Laguerre-Gauss. Se analizan positividad, estabilidad y consistencia. Para las opciones americanas, la parte diferencial del LCP se discretiza con tres niveles temporales mediante cuadratura de Laguerre-Gauss para la integración numérica. Finalmente se implementan métodos iterativos de proyección y relajación sucesiva y la técnica de multimalla. Se muestran varios ejemplos incluyendo estudio de errores y coste computacional. El capítulo 4 está dedicado al modelo de Bates que combina los enfoques de volatilidad estocástica y de difusión con saltos derivando en una EIDP con un término con derivadas cruzadas. Ya que la discretización de una derivada cruzada comporta la existencia de coeficientes negativos en el esquema que deterioran la calidad de la solución numérica, se propone un cambio de variables que elimina dicha derivada cruzada. La EIDP transformada se resuelve numéricamente y se muestra el análisis numérico. Por otra parte se estudia el LCP para opciones americanas con el modelo de Bates. / [CA] El procés d'estimació del preu d'una acció, opció o un altre derivat en els mercats de valors és objecte clau d'estudi de les matemàtiques financeres . Es poden trobar diverses tècniques per a obtindre un model matemàtic adequat a fi de millorar el procés de valoració de les opcions per a períodes curts o llargs. Històricament, l'equació Black-Scholes (1973) va ser un gran avanç en l'elaboració de models matemàtics per als mercats de valors. És un model matemàtic pràctic per a estimar un valor raonable per a una opció. Sobre uns suposats F. Black i M. Scholes van obtindre una equació diferencial parcial lineal amb solució analítica. Des de llavors s'han desenrotllat models més complexos per a adequar-se a la realitat dels mercats. Un tipus és els models amb volatilitat estocástica que ve descrits per una equació en derivades parcials amb dos variables espacials. Un altre enfocament consistix a afegir bots en el preu del subjacent per mitjà de models de Lévy el que porta a resoldre una equació integre-diferencial parcial (EIDP) . En esta memòria s'aborda la resolució numèrica d'una àmplia classe de models baix processos de Lévy. Es desenrotllen esquemes en diferències finites per a opcions europees i també per a opcions americanes amb el seu problema de complementarietat lineal (PCL) associat. A més es tracten models amb volatilitat estocástica incorporant difusió amb bots. Es planteja l'anàlisi numèrica ja que és el camí eficient i pràctic per a garantir la convergència i precisió de les solucions numèriques. De fet, l'absència d'anàlisi numèrica debilita un bon model matemàtic. Esta memòria està organitzada en quatre capítols. El primer és una introducció amb un breu repàs dels processos estocásticos, el model de Black-Scholes així com nocions preliminars d'anàlisi numèrica. En el segon capítol es tracta l'EIDP per a les opcions europees segons el model CGMY. Es proposen dos esquemes en diferències finites; el primer garantix consistència incondicional de la solució mentres que el segon proporciona estabilitat i positivitat incondicionals. Amb el primer enfocament, la part diferencial es discretiza per mitjà d'un esquema explícit i per a la part integral s'empra la regla del trapezi. En la segona aproximació, per a la part diferencial s'usa l'esquema tipus Patankar i la part integral s'aproxima per mitjà de la fórmula de tipus obert amb quatre punts. En el capítol tercer es proposa un tractament unificat per a una àmplia classe de models d'opcions en processos de Lévy com ara CGMY, Meixner i hiperbòlic generalitzat. S'eliminen els termes de reacció i convecció per mitjà d'un apropiat canvi de variables. Després la part diferencial s'aproxima per un esquema explícit mentres que per a la part integral s'usa la fórmula de quadratura de Laguerre-Gauss. S'analitzen positivitat, estabilitat i consistència. Per a les opcions americanes, la part diferencial del LCP es discretiza amb tres nivells temporals amb quadratura de Laguerre-Gauss per a la integració numèrica. Finalment s'implementen mètodes iteratius de projecció i relaxació successiva i la tècnica de multimalla. Es mostren diversos exemples incloent estudi d'errors i cost computacional. El capítol 4 està dedicat al model de Bates que combina els enfocaments de volatilitat estocástica i de difusió amb bots derivant en una EIDP amb un terme amb derivades croades. Ja que la discretización d'una derivada croada comporta l'existència de coeficients negatius en l'esquema que deterioren la qualitat de la solució numèrica, es proposa un canvi de variables que elimina dita derivada croada. La EIDP transformada es resol numèricament i es mostra l'anàlisi numèrica. D'altra banda s'estudia el LCP per a opcions americanes en el model de Bates. / El-Fakharany, MMR. (2015). Finite Difference Schemes for Option Pricing under Stochastic Volatility and Lévy Processes: Numerical Analysis and Computing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/53917
3

Deux études en gestion de risque: assurance de portefeuille avec contrainte en risque et couverture quadratique dans les modèles a sauts

De Franco, Carmine 29 June 2012 (has links) (PDF)
Dans cette thèse, je me suis interessé a deux aspects de la gestion de portefeuille : la maximisation de l'utilité e d'un portefeuille financier lorsque on impose une contrainte sur l'exposition au risque, et la couverture quadratique en marché incomplet. Part I. Dans la première partie, j' étudie un problème d'assurance de portefeuille du point de vue du manager d'un fond d'investissement, qui veut structurer un produit financier pour les investisseurs du fond avec une garantie sur la valeur du portefeuille a la maturité . Si, a la maturité, la valeur du portefeuille est au dessous d'un seuil x e, l'investisseur sera remboursé a la hauteur de ce seuil par une troisième partie, qui joue le rôle d'assureur du fond (on peut imaginer que le fond appartient à une banque et que donc c'est la banque elle même qui joue le rôle d'assureur). En échange de cette assurance, la troisième partie impose une contrainte sur l'exposition au risque que le manager du fond peut tolérer, mesurée avec une mesure de risque monétaire convexe. Je donne la solution complet e de ce problème de maximisation non convexe en marché complet et je prouve que le choix de la mesure de risque est un point crucial pour avoir existence d'un portefeuille optimal. J'applique donc mes résultats lorsque on utilise la mesure de risque entropique (pour laquelle le portefeuille optimal existe toujours), les mesures de risque spectrales (pour lesquelles le portefeuille optimal peut ne pas exister dans certains cas) et la G-divergence. Mots-cl es : Assurance de portefeuille ; maximisation d'utilité ; mesure de risque convexe ; VaR, CVaR et mesure de risque spectrale ; entropie et G-divergence. Part II. Dans la deuxième partie, je m'intéresse au problème de couverture quadratique en marché incomplet. J'assume que le marché est d écrit par un processus Markovien tridimensionnel avec sauts. La premi ère variable d' état décrit l'actif - financier, échangeable sur le marché, qui sert comme instrument de couverture ; la deuxième variable d' état modélise un actif financier que intervient dans la dynamique de l'instrument de couverture mais qui n'est pas échangeable sur le march é : il peut donc être vu comme un facteur de volatilité de l'instrument de couverture, ou comme un actif financier que l'on ne peut pas acheter (pour de raisons légales par exemple) ; la troisième et dernière variable d' état représente une source externe de risque qui affecte l'option Européenne qu'on veut couvrir, et qui, elle aussi, n'est pas échangeable sur le marché. Pour résoudre le problème j'utilise l'approche de la programmation dynamique, qui me permet d' écrire l' équation de Hamilton-Jacobi- Bellman associé e au problème de couverture quadratique, qui est non locale en non linéaire. Je prouve que la fonction valeur associée au problème de couverture quadratique peut être caractérisée par un système de trois équations integro- différentielles aux dérivées partielles, dont l'une est semilinéaire et ne dépends pas du choix de l'option a couvrir, et les deux autres sont simplement linéaires , et que ce système a une unique solution r régulière dans un espace de Hölder approprié, qui me permet donc de caractériser la stratégie de couverture optimale . Ce résultat est démontré lorsque le processus est non dégénéré (c'est a dire que la composante Brownienne est strictement elliptique) et lorsque le processus est a sauts purs. Je conclus avec une application de mes résultats dans le cadre du marché de l' électricité. Mots-cl es : Couverture quadratique ; modèle a sauts ; programmation dynamique ; équation de Hamilton-Jacobi-Bellman ; équations aux dérivées partielles integro-différentielles.
4

Pricing CPPI Capital Guarantees: A Lagrangian Framework

Morley, Christopher Stephen Band January 2011 (has links)
A robust computational framework is presented for the risk-neutral valuation of capital guarantees written on discretely-reallocated portfolios following the Constant Proportion Portfolio Insurance (CPPI) strategy. Aiming to address the (arguably more realistic) cases where analytical results are unavailable, this framework accommodates risky-asset jumps, volatility surfaces, borrowing restrictions, nonuniform reallocation schedules and autonomous CPPI floor trajectories. The two-asset state space representation developed herein facilitates visualising the CPPI strategy, which in turn provides insight into grid design and interpolation. It is demonstrated that given a deterministic process for the risk-free rate, the pricing problem can be cast as solving cascading systems of 1D partial integro-differential equations (PIDEs). This formulation’s stability and monotonicity are studied. In addition to making more sense financially, the limited borrowing variant of the CPPI strategy is found to be better suited than the classical (unlimited borrowing) counterpart for bounded-domain calculations. Consequently, it is demonstrated how the unlimited borrowing problem can be approximated by imposing an artificial borrowing limit. For implementation validation, analytical solutions to special cases are derived. Numerical tests are presented to demonstrate the versatility of this framework.
5

Pricing CPPI Capital Guarantees: A Lagrangian Framework

Morley, Christopher Stephen Band January 2011 (has links)
A robust computational framework is presented for the risk-neutral valuation of capital guarantees written on discretely-reallocated portfolios following the Constant Proportion Portfolio Insurance (CPPI) strategy. Aiming to address the (arguably more realistic) cases where analytical results are unavailable, this framework accommodates risky-asset jumps, volatility surfaces, borrowing restrictions, nonuniform reallocation schedules and autonomous CPPI floor trajectories. The two-asset state space representation developed herein facilitates visualising the CPPI strategy, which in turn provides insight into grid design and interpolation. It is demonstrated that given a deterministic process for the risk-free rate, the pricing problem can be cast as solving cascading systems of 1D partial integro-differential equations (PIDEs). This formulation’s stability and monotonicity are studied. In addition to making more sense financially, the limited borrowing variant of the CPPI strategy is found to be better suited than the classical (unlimited borrowing) counterpart for bounded-domain calculations. Consequently, it is demonstrated how the unlimited borrowing problem can be approximated by imposing an artificial borrowing limit. For implementation validation, analytical solutions to special cases are derived. Numerical tests are presented to demonstrate the versatility of this framework.
6

On parabolic stochastic integro-differential equations : existence, regularity and numerics

Leahy, James-Michael January 2015 (has links)
In this thesis, we study the existence, uniqueness, and regularity of systems of degenerate linear stochastic integro-differential equations (SIDEs) of parabolic type with adapted coefficients in the whole space. We also investigate explicit and implicit finite difference schemes for SIDEs with non-degenerate diffusion. The class of equations we consider arise in non-linear filtering of semimartingales with jumps. In Chapter 2, we derive moment estimates and a strong limit theorem for space inverses of stochastic flows generated by Lévy driven stochastic differential equations (SDEs) with adapted coefficients in weighted Hölder norms using the Sobolev embedding theorem and the change of variable formula. As an application of some basic properties of flows of Weiner driven SDEs, we prove the existence and uniqueness of classical solutions of linear parabolic second order stochastic partial differential equations (SPDEs) by partitioning the time interval and passing to the limit. The methods we use allow us to improve on previously known results in the continuous case and to derive new ones in the jump case. Chapter 3 is dedicated to the proof of existence and uniqueness of classical solutions of degenerate SIDEs using the method of stochastic characteristics. More precisely, we use Feynman-Kac transformations, conditioning, and the interlacing of space inverses of stochastic flows generated by SDEs with jumps to construct solutions. In Chapter 4, we prove the existence and uniqueness of solutions of degenerate linear stochastic evolution equations driven by jump processes in a Hilbert scale using the variational framework of stochastic evolution equations and the method of vanishing viscosity. As an application, we establish the existence and uniqueness of solutions of degenerate linear stochastic integro-differential equations in the L2-Sobolev scale. Finite difference schemes for non-degenerate SIDEs are considered in Chapter 5. Specifically, we study the rate of convergence of an explicit and an implicit-explicit finite difference scheme for linear SIDEs and show that the rate is of order one in space and order one-half in time.
7

Tracking of individual cell trajectories in LGCA models of migrating cell populations

Mente, Carsten 22 May 2015 (has links) (PDF)
Cell migration, the active translocation of cells is involved in various biological processes, e.g. development of tissues and organs, tumor invasion and wound healing. Cell migration behavior can be divided into two distinct classes: single cell migration and collective cell migration. Single cell migration describes the migration of cells without interaction with other cells in their environment. Collective cell migration is the joint, active movement of multiple cells, e.g. in the form of strands, cohorts or sheets which emerge as the result of individual cell-cell interactions. Collective cell migration can be observed during branching morphogenesis, vascular sprouting and embryogenesis. Experimental studies of single cell migration have been extensive. Collective cell migration is less well investigated due to more difficult experimental conditions than for single cell migration. Especially, experimentally identifying the impact of individual differences in cell phenotypes on individual cell migration behavior inside cell populations is challenging because the tracking of individual cell trajectories is required. In this thesis, a novel mathematical modeling approach, individual-based lattice-gas cellular automata (IB-LGCA), that allows to investigate the migratory behavior of individual cells inside migrating cell populations by enabling the tracking of individual cells is introduced. Additionally, stochastic differential equation (SDE) approximations of individual cell trajectories for IB-LGCA models are constructed. Such SDE approximations allow the analytical description of the trajectories of individual cells during single cell migration. For a complete analytical description of the trajectories of individual cell during collective cell migration the aforementioned SDE approximations alone are not sufficient. Analytical approximations of the time development of selected observables for the cell population have to be added. What observables have to be considered depends on the specific cell migration mechanisms that is to be modeled. Here, partial integro-differential equations (PIDE) that approximate the time evolution of the expected cell density distribution in IB-LGCA are constructed and coupled to SDE approximations of individual cell trajectories. Such coupled PIDE and SDE approximations provide an analytical description of the trajectories of individual cells in IB-LGCA with density-dependent cell-cell interactions. Finally, an IB-LGCA model and corresponding analytical approximations were applied to investigate the impact of changes in cell-cell and cell-ECM forces on the migration behavior of an individual, labeled cell inside a population of epithelial cells. Specifically, individual cell migration during the epithelial-mesenchymal transition (EMT) was considered. EMT is a change from epithelial to mesenchymal cell phenotype which is characterized by cells breaking adhesive bonds with surrounding epithelial cells and initiating individual migration along the extracellular matrix (ECM). During the EMT, a transition from collective to single cell migration occurs. EMT plays an important role during cancer progression, where it is believed to be linked to metastasis development. In the IB-LGCA model epithelial cells are characterized by balanced cell-cell and cell-ECM forces. The IB-LGCA model predicts that the balance between cell-cell and cell-ECM forces can be disturbed to some degree without being accompanied by a change in individual cell migration behavior. Only after the cell force balance has been strongly interrupted mesenchymal migration behavior is possible. The force threshold which separates epithelial and mesenchymal migration behavior in the IB-LGCA has been identified from the corresponding analytical approximation. The IB-LGCA model allows to obtain quantitative predictions about the role of cell forces during EMT which in the context of mathematical modeling of EMT is a novel approach.
8

Tracking of individual cell trajectories in LGCA models of migrating cell populations

Mente, Carsten 20 April 2015 (has links)
Cell migration, the active translocation of cells is involved in various biological processes, e.g. development of tissues and organs, tumor invasion and wound healing. Cell migration behavior can be divided into two distinct classes: single cell migration and collective cell migration. Single cell migration describes the migration of cells without interaction with other cells in their environment. Collective cell migration is the joint, active movement of multiple cells, e.g. in the form of strands, cohorts or sheets which emerge as the result of individual cell-cell interactions. Collective cell migration can be observed during branching morphogenesis, vascular sprouting and embryogenesis. Experimental studies of single cell migration have been extensive. Collective cell migration is less well investigated due to more difficult experimental conditions than for single cell migration. Especially, experimentally identifying the impact of individual differences in cell phenotypes on individual cell migration behavior inside cell populations is challenging because the tracking of individual cell trajectories is required. In this thesis, a novel mathematical modeling approach, individual-based lattice-gas cellular automata (IB-LGCA), that allows to investigate the migratory behavior of individual cells inside migrating cell populations by enabling the tracking of individual cells is introduced. Additionally, stochastic differential equation (SDE) approximations of individual cell trajectories for IB-LGCA models are constructed. Such SDE approximations allow the analytical description of the trajectories of individual cells during single cell migration. For a complete analytical description of the trajectories of individual cell during collective cell migration the aforementioned SDE approximations alone are not sufficient. Analytical approximations of the time development of selected observables for the cell population have to be added. What observables have to be considered depends on the specific cell migration mechanisms that is to be modeled. Here, partial integro-differential equations (PIDE) that approximate the time evolution of the expected cell density distribution in IB-LGCA are constructed and coupled to SDE approximations of individual cell trajectories. Such coupled PIDE and SDE approximations provide an analytical description of the trajectories of individual cells in IB-LGCA with density-dependent cell-cell interactions. Finally, an IB-LGCA model and corresponding analytical approximations were applied to investigate the impact of changes in cell-cell and cell-ECM forces on the migration behavior of an individual, labeled cell inside a population of epithelial cells. Specifically, individual cell migration during the epithelial-mesenchymal transition (EMT) was considered. EMT is a change from epithelial to mesenchymal cell phenotype which is characterized by cells breaking adhesive bonds with surrounding epithelial cells and initiating individual migration along the extracellular matrix (ECM). During the EMT, a transition from collective to single cell migration occurs. EMT plays an important role during cancer progression, where it is believed to be linked to metastasis development. In the IB-LGCA model epithelial cells are characterized by balanced cell-cell and cell-ECM forces. The IB-LGCA model predicts that the balance between cell-cell and cell-ECM forces can be disturbed to some degree without being accompanied by a change in individual cell migration behavior. Only after the cell force balance has been strongly interrupted mesenchymal migration behavior is possible. The force threshold which separates epithelial and mesenchymal migration behavior in the IB-LGCA has been identified from the corresponding analytical approximation. The IB-LGCA model allows to obtain quantitative predictions about the role of cell forces during EMT which in the context of mathematical modeling of EMT is a novel approach.

Page generated in 0.1812 seconds