• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 10
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Case Studies for Second-Order (Direct) Analysis of Semi-Rigid Frames in Hong Kong.

Liu, Y.P., Lam, Dennis, Chan, S.L. January 2010 (has links)
N/A
2

A Study on the Effect of Jumbo Angles on the Strength and Stiffness of Top-and-Seat Angle Connections

Kennedy, Richard C. January 2014 (has links)
No description available.
3

STRENGTH DETERMINATION OF HEAVY CLIP-ANGLE CONNECTION COMPONENTS

GAO, XIAOJIANG January 2002 (has links)
No description available.
4

Contribution of Shear Connections to the Lateral Stiffness and Strength of Steel Frames

Barber, Melinda A. 20 September 2011 (has links)
No description available.
5

A Design Procedure for Bolted Top-and-Seat Angle Connections for Use in Seismic Applications

Schippers, Jared D. 21 September 2012 (has links)
No description available.
6

Behavior and modeling of partially restrained beam-girder connections

Rex, Clinton O. 06 June 2008 (has links)
Beams in a typical steel framed floor design are assumed to have pinned supports for purposes of design. In reality, the connections between the beams and girders in a steel framed floor system are not pinned. The design bending moments and deflections of the attached beam could be reduced if the true rotational restraint provided by the beam-girder connections could be included in the design. The connection rotational restraint is characterized by the moment-rotation behavior. Consequently, a method for approximating the moment-rotation behavior of the beam-girder connection is required before the beneficial effects of the true connection rotational restraint can be considered in design. Experimental and analytical research on the moment-rotation behavior of a specific type of beam-girder connection is presented in this dissertation. The primary objective of this research is to develop a component model of the connection that can be used to approximate the moment-rotation behavior. The component model is based on the hypothesis that the connection behavior can be modeled as a combination of the connection component behaviors. The connection components are the fundamental pieces of the connection such as bolts, shear studs, and welds. In general, the component model can be very computationally intensive. Consequently, a secondary objective of this research is to develop a connection model that is simpler to use. Behavior models for each of the connection components are presented and/or developed. These models are derived from a combination of existing literature, experimental and analytical research, and basic mechanics. Next, a method of combining the component behaviors into a connection model that can be used to approximate the moment-rotation behavior is developed. Results from experimental research on the moment-rotation behavior of the beam-girder connection are then used to verify the model. Finally, a simplified model of the beam-girder connection is developed. This model is based on the same hypothesis as the component model; however, through a combination of assumptions, simplifications, and the results of parametric studies the simplified model becomes far less computationally intensive than the full component model. / Ph. D.
7

Influence of the Gravity System on the Seismic Performance of Special Steel Moment Frames

Flores Solano, Francisco Xavier 09 April 2015 (has links)
This study investigates the influence of the gravity load resisting system on the collapse performance of Special Steel Moment Frames (SMFs). The influence was quantified using the FEMA P-695 methodology. The buildings used for this study were a 2-, 4- and 8-story SMFs taken from the ATC76-1 project where their collapse performance was already evaluated without the gravity system. The main work of this dissertation has been divided in two parts. The first part studies the influence of the gravity system when it is incorporated explicitly as part of the lateral resisting system. Aspects of the gravity frame that were investigated include the contribution of stiffness and strength of beam to column connections, and the location of splices in the gravity columns. Moreover, this research investigates the potential for the development of inelastic deformations in the gravity columns, and the effect of such deformations on structural response. The results show that gravity connections and gravity column's continuity profoundly affect the computed response and collapse probability. The inelastic behavior in gravity columns has a less important effect but should be included in the analysis. The second part of the investigation looks more in depth at the role of the gravity columns on the collapse performance of SMFs. Using the 2-, 4- and 8-story SMFs, the gravity columns are incorporated using the approach where all the gravity columns are lumped into one elastic, pinned at the base and continuous element. The approach is first validated by checking different aspects such as: strength of gravity connections to induce yielding into gravity columns, difference between the explicit and lumping column approach, and required gravity column's splices to provide continuity. The stiffness of the element representing the gravity columns was varied in order to find the influence of the gravity columns. At the end of the study it was found that they have a significant influence on the collapse performance of SMFs, especially on taller structures like the 8-story model. Moreover it was concluded that an adequate stiffness of the gravity columns could be found by performing nonlinear static pushover analysis. / Ph. D.
8

Evaluation of the Seismic Performance of Steel Moment Frames with Partially-Restrained Connections

Marucci, Derek A. January 2015 (has links)
No description available.
9

Innovative Self-Centering Connection for CCFT Composite Columns

Gao, Yu 27 January 2016 (has links)
Concrete filled steel tubes are regarded as ideal frame members in seismic resisting systems, as they combine large axial and flexural capacity with ductility. The combination of the two materials increases the strength of the confined concrete and avoids premature local buckling of the steel tube. These benefits are more prominent for circular than for rectangular concrete filled steel tubes. However, most common connection configurations for circular concrete filled tubes are not economic in the US market due to (a) the desire of designers to use only fully restrained connections and its associated (b) high cost of fabrication and field welding. Research indicates that well designed partially restrained connections can supply equal or even better cyclic behavior. Partially restrained connections also possess potential capability to develop self-centering system, which has many merits in seismic design. The goal of this research is to develop a new connection configuration between circular concrete filled steel columns and conventional W steel beams. The new connection configuration is intended to provide another option for rapid assembling on site with low erection costs. The proposed connection is based on an extended stiffened end plate that utilizes through rods. The rods are a combination of conventional steel and shape memory alloy that provide both energy dissipation and self-centering capacity. The new connection configuration should be workable for large beam sizes and can be easily expanded to a biaxial bending moment connection. / Ph. D.
10

Seismic Fragility Assessment of Steel Frames in the Central and Eastern United States

Kinali, Kursat 28 March 2007 (has links)
The Central and Eastern United States (CEUS) is a region that is characterized by low frequency-high consequence seismic events such as the New Madrid sequence of 18111812. The infrequent nature of earthquakes in the region has led to a perception that the seismic risk in the area is low, and the current building stock reflects this perception. The majority of steel-framed buildings in the CEUS were designed without regard to seismic loads. Such frames possess limited seismic resistance, and may pose an unacceptable risk if a large earthquake were to occur in the region. A key ingredient of building performance and seismic risk assessment is the fragility, a term that describes the probability of failure to meet a performance objective as a function of demand on the system. The effects of uncertainties on building seismic performance can be displayed by a seismic fragility relationship. This fragility can be used in a conditional scenario-based seismic risk assessment or can be integrated with seismic hazard to obtain an estimate of annual or lifetime risk. The seismic fragility analyses in this study focus on steel frames that are typical of building construction in regions of infrequent seismicity; such frames have received little attention to date in building seismic risk assessment. Current steel building stock in Shelby Co., TN has been represented by five code-compliant model frames with different lateral force-resisting systems, i.e., braced-frames, partially-restrained moment frames and a rigid moment frame. The performance of model frames under certain hazard levels was assessed using fragility curves. Different rehabilitation methods were discussed and applied. Results indicate that PR frames behave better than expected and rehabilitated frames perform quite well even under severe earthquakes.

Page generated in 0.0908 seconds