• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Airborne Nanoparticles: Generation, Characterization, and Occupational Exposure

Yeganeh Talab, Behnoush 26 March 2007 (has links)
Despite the rapid growth in nanotechnology, very little is known about the unintended health or environmental effects of manufactured nanomaterials. The development of nanotechnology risk assessments and regulations requires quantitative information on the potential for exposure to nanomaterials. In addition, to facilitate life-cycle assessments and inhalation toxicology studies, robust methods are needed to generate aerosolized engineered nanoparticles. We conducted a set of field studies to measure the fine particle mass concentrations (PM2.5) as well as nanoparticle number concentrations and size distributions in two nanomaterial manufacturing facilities. Measurements were performed near the reactor, in the breathing zone, and at a background site. Increases in PM2.5 and particle number concentrations were associated with physical handling of nanomaterials. The highest PM2.5 concentration observed was 2700 ug m-3 during sweeping of the reactor in the commercial plant. In most cases, an increase in the number of sub-100 nm particles accounted for the increase in total number concentrations. The results of this research can be used to develop guidelines for workplace regulations to minimize workers' exposure to nanoparticles. Furthermore, we used an atomizer to aerosolize C60 aggregates from a fullerene-water suspension. Measurement of particle size distributions and number concentrations showed that increasing the initial fullerene concentration resulted in increased number of aerosolized particles, while the average size of particles remained relatively constant. To return the aerosolized fullerenes into water, we passed the aerosol sample through an impinger. Reducing the flow rate through the impinger resulted in an increase in the collection efficiency of airborne nanoparticles. / Master of Science
2

Análise experimental e numérica da concentração e dinâmica de partículas em sala cirúrgica e quarto de isolamento hospitalar. / Numerical and experimental analysis of particle concentration and dynamics in an operating room and isolation room.

Vilain, Rogério 15 December 2015 (has links)
A presente pesquisa tem como objetivo avaliar a eficiência de diferentes sistemas de ventilação no controle da transmissão aérea de agentes infecciosos em sala cirúrgica e em quarto de isolamento hospitalar. Para isso, foram desenvolvidos estudos experimentais e numéricos a partir de dados gerados em um hospital brasileiro de referência no tratamento de doenças respiratórias. Em uma sala cirúrgica, comparou-se o sistema de climatização existente (sistema de ventilação unidirecional) com um sistema split, adaptado na sala especialmente para este estudo. Em um quarto de isolamento compararam-se diferentes arranjos com ventilação natural (porta e janelas) e/ou mecânica (ventilador axial e unidade de descontaminação - filtro e exaustor). Em ambos os ambientes foram medidos parâmetros ambientais (velocidade do ar, temperatura do ar e intensidade de turbulência) e se realizou um estudo da concentração de partículas, mediante o uso de um gerador de partículas monodisperso. A partir dos dados gerados por meio desses procedimentos experimentais, para a sala cirúrgica, obteve-se o fator de proteção e, para o quarto de isolamento, a probabilidade de infecção utilizando o equacionamento proposto por Wells e Riley, bem como a taxa de decaimento de partículas. Os resultados experimentais subsidiaram a realização de um estudo numérico, que consistiu na avaliação dos campos de velocidade, temperatura e intensidade de turbulência do ar para os diferentes tipos de ventilação estudados e no estudo da dinâmica de partículas nos dois ambientes. Embora o sistema unidirecional seja, teoricamente, mais eficiente no controle das partículas, a metodologia de análise adotada evidenciou ineficiência do sistema na remoção de partículas devido a problemas na instalação e operação. Quanto ao sistema split, o presente estudo, como outros assemelhados, evidenciou a inadequação de seu uso em salas cirúrgicas. No quarto de isolamento a ventilação natural mostrou-se o método mais eficiente para a remoção de partículas e, consequentemente, o que mais reduz o risco de contaminação cruzada, conforme o equacionamento original de Wells-Riley. Para a sala cirúrgica foram obtidos valores experimentais do fator de proteção variando entre 0,10 e 0,52 e de -0,9 a +2,5 na análise numérica. Para o quarto de isolamento foram obtidos experimentalmente riscos de infecção entre 0,25 e 2,65%. Finalizando, este trabalho visa contribuir na proposição de uma metodologia experimental e numérica para a avaliação da dinâmica das partículas e, consequentemente, do risco de infecção por via aérea em ambientes hospitalares. / This research aims to evaluate the efficiency of different ventilation systems to control airborne transmission of infectious agents in a hospital operating room and isolation room. Experimental and numerical studies were carried out based on data generated in a Brazilian reference hospital for the treatment of respiratory diseases. In an operating room, an existing unidirectional air conditioning system (i. e., laminar air flow - LAF) was compared to a split system, adapted in the room especially for this study. In a respiratory isolation room, comparisons were drawn between different arrangements with natural ventilation (door and window) and/or mechanical ventilation (axial fan and decontamination unit - filter plus exhaust fan). In both rooms, environmental parameters (air speed, air temperature and turbulence intensity) were measured, and a study of particle concentration was developed employing a monodisperse aerosol generator. The data generated by these experimental procedures were used to calculate the protection factor for the operating room and the probability of infection for the isolation room, using the equation proposed by Wells and Riley, as well as the rate of particle decay. The experimental results were then used in a numerical study, which included evaluation of the fields of air velocity, temperature and turbulence intensity for different types of ventilation under study, as well as the analysis of particle dynamics in both environments. Although the unidirectional system is theoretically more effective for particle control, the methodology of analysis adopted revealed an inefficiency of this system in removing particles, due to installation and operation problems. Concerning the split system, this research - similarly to analogous studies - emphasizes the inadequacy of its use in operating rooms. In the isolation room, natural ventilation proved the most effective method for removing particles and, consequently, the one which reduces the most the risk of cross-contamination, according to the original Wells-Riley modeling. In the operating room were obtained experimental data for the protection factor ranging from 0.10 to 0.52 and from -0.9 to +2.5 in the numerical analysis. In the isolation room were obtained probabilities of infection between 0.25 and 2.65%. Finally, this work aims to contribute in proposing an experimental and numerical methodology for assessing the dynamics of particles and hence risk of airborne infection in hospital settings.
3

Análise experimental e numérica da concentração e dinâmica de partículas em sala cirúrgica e quarto de isolamento hospitalar. / Numerical and experimental analysis of particle concentration and dynamics in an operating room and isolation room.

Rogério Vilain 15 December 2015 (has links)
A presente pesquisa tem como objetivo avaliar a eficiência de diferentes sistemas de ventilação no controle da transmissão aérea de agentes infecciosos em sala cirúrgica e em quarto de isolamento hospitalar. Para isso, foram desenvolvidos estudos experimentais e numéricos a partir de dados gerados em um hospital brasileiro de referência no tratamento de doenças respiratórias. Em uma sala cirúrgica, comparou-se o sistema de climatização existente (sistema de ventilação unidirecional) com um sistema split, adaptado na sala especialmente para este estudo. Em um quarto de isolamento compararam-se diferentes arranjos com ventilação natural (porta e janelas) e/ou mecânica (ventilador axial e unidade de descontaminação - filtro e exaustor). Em ambos os ambientes foram medidos parâmetros ambientais (velocidade do ar, temperatura do ar e intensidade de turbulência) e se realizou um estudo da concentração de partículas, mediante o uso de um gerador de partículas monodisperso. A partir dos dados gerados por meio desses procedimentos experimentais, para a sala cirúrgica, obteve-se o fator de proteção e, para o quarto de isolamento, a probabilidade de infecção utilizando o equacionamento proposto por Wells e Riley, bem como a taxa de decaimento de partículas. Os resultados experimentais subsidiaram a realização de um estudo numérico, que consistiu na avaliação dos campos de velocidade, temperatura e intensidade de turbulência do ar para os diferentes tipos de ventilação estudados e no estudo da dinâmica de partículas nos dois ambientes. Embora o sistema unidirecional seja, teoricamente, mais eficiente no controle das partículas, a metodologia de análise adotada evidenciou ineficiência do sistema na remoção de partículas devido a problemas na instalação e operação. Quanto ao sistema split, o presente estudo, como outros assemelhados, evidenciou a inadequação de seu uso em salas cirúrgicas. No quarto de isolamento a ventilação natural mostrou-se o método mais eficiente para a remoção de partículas e, consequentemente, o que mais reduz o risco de contaminação cruzada, conforme o equacionamento original de Wells-Riley. Para a sala cirúrgica foram obtidos valores experimentais do fator de proteção variando entre 0,10 e 0,52 e de -0,9 a +2,5 na análise numérica. Para o quarto de isolamento foram obtidos experimentalmente riscos de infecção entre 0,25 e 2,65%. Finalizando, este trabalho visa contribuir na proposição de uma metodologia experimental e numérica para a avaliação da dinâmica das partículas e, consequentemente, do risco de infecção por via aérea em ambientes hospitalares. / This research aims to evaluate the efficiency of different ventilation systems to control airborne transmission of infectious agents in a hospital operating room and isolation room. Experimental and numerical studies were carried out based on data generated in a Brazilian reference hospital for the treatment of respiratory diseases. In an operating room, an existing unidirectional air conditioning system (i. e., laminar air flow - LAF) was compared to a split system, adapted in the room especially for this study. In a respiratory isolation room, comparisons were drawn between different arrangements with natural ventilation (door and window) and/or mechanical ventilation (axial fan and decontamination unit - filter plus exhaust fan). In both rooms, environmental parameters (air speed, air temperature and turbulence intensity) were measured, and a study of particle concentration was developed employing a monodisperse aerosol generator. The data generated by these experimental procedures were used to calculate the protection factor for the operating room and the probability of infection for the isolation room, using the equation proposed by Wells and Riley, as well as the rate of particle decay. The experimental results were then used in a numerical study, which included evaluation of the fields of air velocity, temperature and turbulence intensity for different types of ventilation under study, as well as the analysis of particle dynamics in both environments. Although the unidirectional system is theoretically more effective for particle control, the methodology of analysis adopted revealed an inefficiency of this system in removing particles, due to installation and operation problems. Concerning the split system, this research - similarly to analogous studies - emphasizes the inadequacy of its use in operating rooms. In the isolation room, natural ventilation proved the most effective method for removing particles and, consequently, the one which reduces the most the risk of cross-contamination, according to the original Wells-Riley modeling. In the operating room were obtained experimental data for the protection factor ranging from 0.10 to 0.52 and from -0.9 to +2.5 in the numerical analysis. In the isolation room were obtained probabilities of infection between 0.25 and 2.65%. Finally, this work aims to contribute in proposing an experimental and numerical methodology for assessing the dynamics of particles and hence risk of airborne infection in hospital settings.
4

Three-Dimensional Motion Control and Dynamic Force Sensing of a Magnetically Propelled Micro Particle Using a Hexapole Magnetic Actuator

Long, Fei 08 June 2016 (has links)
No description available.
5

Design of Hospital Operating Room Ventilation using Computational Fluid Dynamics / Utforma operationssalars ventilationssystem med hjälp av beräkningsströmningsmekanik

Sadrizadeh, Sasan January 2016 (has links)
The history of surgery is nearly as old as the human race. Control of wound infection has always been an essential part of any surgical procedure, and is still an important challenge in hospital operating rooms today. For patients undergoing surgery there is always a risk that they will develop some kind of postoperative complication. It is widely accepted that airborne bacteria reaching a surgical site are mainly staphylococci released from the skin flora of the surgical staff in the operating room and that even a small fraction of those particles can initiate a severe infection at the surgical site.  Wound infections not only impose a tremendous burden on healthcare resources but also pose a major threat to the patient. Hospital-acquired infection ranks amongst the leading causes of death within the surgical patient population. A broad knowledge and understanding of sources and transport mechanisms of infectious particles may provide valuable possibilities to control and minimize postoperative infections. This thesis contributes to finding solutions, through analysis of such mechanisms for a range of ventilation designs together with investigation of other factors that can influence spread of infection in hospitals, particularly in operating rooms. The aim of this work is to apply the techniques of computational fluid dynamics in order to provide better understanding of air distribution strategies that may contribute to infection control in operating room and ward environments of hospitals, so that levels of bacteria-carrying particles in the air can be reduced while thermal comfort and air quality are improved.  A range of airflow ventilation principles including fully mixed, laminar and hybrid strategies were studied. Airflow, particle and tracer gas simulations were performed to examine contaminant removal and air change effectiveness. A number of further influential parameters on the performance of airflow ventilation systems in operating rooms were examined and relevant measures for improvement were identified. It was found that airflow patterns within operating room environments ranged from laminar to transitional to turbulent flows. Regardless of ventilation system used, a combination of all airflow regimes under transient conditions could exist within the operating room area. This showed that applying a general model to map airflow field and contaminant distribution may result in substantial error and should be avoided. It was also shown that the amount of bacteria generated in an operating room could be minimized by reducing the number of personnel present. Infection-prone surgeries should be performed with as few personnel as possible. The initial source strength (amount of colony forming units that a person emits per unit time) of staff members can also be substantially reduced, by using clothing systems with high protective capacity. Results indicated that horizontal laminar airflow could be a good alternative to the frequently used vertical system. The horizontal airflow system is less sensitive to thermal plumes, easy to install and maintain, relatively cost-efficient and does not require modification of existing lighting systems. Above all, horizontal laminar airflow ventilation does not hinder surgeons who need to bend over the surgical site to get a good view of the operative field. The addition of a mobile ultra-clean exponential laminar airflow screen was also investigated as a complement to the main ventilation system in the operating room. It was concluded that this system could reduce the count of airborne particles carrying microorganisms if proper work practices were maintained by the surgical staff. A close collaboration and mutual understanding between ventilation experts and surgical staff would be a key factor in reducing infection rates. In addition, effective and frequent evaluation of bacteria levels for both new and existing ventilation systems would also be important. / Tidigt i mänsklighetens utveckling har kirurgin funnits med i bilden. Hantering av infektioner har genom tiderna varit en oundviklig del av alla kirurgiska ingrepp, och finns kvar ännu idag som en viktig utmaning i operationssalar på sjukhus. För patienter som genomgår kirurgi finns alltid en risk att de efter ingreppet utvecklar någon behandlingsrelaterad komplikation. Allmänt accepterat är att de luftburna bakterier som når operationsområdet huvudsakligen består av stafylokocker frigjorda från hudfloran av operationspersonalen i operationssalen, och att endast en liten del av dessa partiklar behövs för att initiera en allvarlig infektion i det behandlade området. Sårinfektioner innebär inte bara en enorm börda för hälso- och sjukvårdsresurser, utan utgör också en betydande risk för patienten. På sjukhus förvärvad infektion finns bland de främsta dödsorsakerna i kirurgiska patientgrupper.. En bred kunskap och förståelse av spridningsmekanismer och källor till infektionsspridande partiklar kan ge värdefulla möjligheter att kontrollera och minimera postoperativa infektioner. Denna avhandling bidrar till lösningar genom analys av en rad olika ventilationssystem tillsammans med undersökning av andra faktörer som kan påverka infektionsspridningen på sjukhus, främst i operationssalar. Syftet med arbetet är att med hjälp av CFD-teknik (Computational Fluid Dynamics) få bättre förståelse för olika luftspridningsmekanismers betydelse vid ventilation av operationssalar och vårdinrättningar på sjukhus, så att halten av bacteriebärande partiklar i luften kan minskas samtidigt som termisk komfort och luftkvalité förbättras.  Flera luftflödesprinciper för ventilation inklusive omblandade strömning, riktad (laminär) strömning och hybridstrategier har studerats. Simuleringar av luft-, partikel- och spårgasflöden gjordes för alla fallstudier för att undersöka partikelevakuering och luftomsättning i rummet. Flera viktiga parametrar som påverkar detta undersöktes och relevanta förbättringar  föreslås i samarbete med industrin. Av resultaten framgår att mängden genererade bakterier i en operationssal  kan begränsas genom att minska antalet personer i operationsteamet. Infektionsbenägna operationer skall utföras med så lite personal som möjligt. Den initiala källstyrkan (mängden kolonibildande enheter som en person avger per tidsenhet) från operationsteamet kan avsevärt minskas om högskyddande kläder används. Av resultaten framgår också att ett horisontellt (laminärt) luftflöde kan vara ett bra alternativ till det ofta använda vertikala luftflödet. Ett horisontellt luftflöde är mindre känsligt för termisk påverkan från omgivningen, enkelt att installera och underhålla, relativt kostnadseffektivt och kräver vanligen ingen förändring av befintlig belysningsarmatur. Framför allt begränsar inte denna ventilationsprincip kirurgernas rörelsemönster. De kan luta kroppen över operationsområdet utan att hindra luftflödet. En flyttbar flexibel skärm för horisontell spridning av ultraren ventilationsluft i tillägg till ordinarie ventilation undersöktes också. Man fann att denna typ av tilläggsventilation kan minska antalet luftburna partiklar som bär mikroorganismer om operationspersonalen följer en strikt arbetsordning. Bra samarbete och förståelse mellan ventilationsexperter och operationsteamet på sjukhuset är nyckeln till att få ner infektionsfrekvensen. Det är också viktigt med effektiva och frekventa utvarderingar av bakteriehalten i luften, för såväl nya  som befintliga ventilationssystem. / <p>QC 20160129</p>

Page generated in 0.0618 seconds