• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions à l'étude des partitions spectrales minimales

Léna, Corentin 13 December 2013 (has links) (PDF)
Ce travail porte sur le problème des partitions minimales, à l'interface entre théorie spectrale et optimisation de forme. Une introduction générale précise le problème et présente des résultats, principalement dûs à B. Helffer, T. Hoffmann-Ostenhof et S. Terracini, qui sont utilisés dans le reste de la thèse.Le premier chapitre est une étude spectrale asymptotique du laplacien de Dirichlet sur une famille de domaines en dimension deux qui tend vers un segment. L'objectif est d'obtenir une localisation des lignes nodales dans la limite des domaines minces. En appliquant les résultats de Helffer, Hoffmann-Ostenhof et Terracini, on montre ainsi que les domaines nodaux des premières fonctions propres forment des partitions minimales.Le deuxième chapitre étudie les valeurs propres de certains opérateurs de Schrödinger sur un domaine plan avec condition au bord de Dirichlet. On considère des opérateurs qui ont un potentiel électrique nul et un potentiel magnétique d'un type particulier, dit d'Aharonov-Bohm, avec des singularités en un nombre fini de points appelés pôles. On démontre que les valeurs propres dépendent continuement des pôles. Dans le cas de pôles distincts et éloignés du bord, on prouve que cette dépendance est analytique lorsque la valeur propre est simple. On exprime de plus une condition suffisante pour que la fonction qui aux pôles associe une valeur propre présente un point critique. On utilise alors la caractérisation magnétique des partitions minimales pour montrer que l'énergie minimale est une valeur critique d'une de ces fonctions.Le troisième chapitre est un article écrit en collaboration avec Virginie Bonnaillie-Noël. Il porte sur une famille d'exemples, les secteurs angulaires de rayon unité et d'ouverture variable, dont on tente de déterminer les partitions minimales. On applique pour cela les théorèmes généraux rappelés dans l'introduction afin de déterminer les partitions nodales qui sont minimales. On s'intéresse plus particulièrement aux partitions minimales en trois domaines. En appliquant les idées du deuxième chapitre, on montre que pour certaines valeur de l'angle, il n'existe aucune partition minimale qui soit symétrique par rapport à la bissectrice du domaine. D'un point de vue quantitatif, on obtient des encadrements précis de l'énergie minimale.Le quatrième chapitre consiste en l'étude des partitions minimales de tores plats dont on fait varier le rapport entre longueur et largeur. On utilise une méthode numérique très différente de celle du troisième chapitre, basée sur un article de B. Bourdin, D. Bucur et É. Oudet. Elle consiste en une relaxation suivie d'une optimisation par un algorithme de gradient projeté. On peut ainsi tester des résultats théoriques antérieurs. Les résultats présentés suggèrent de plus la construction explicite de familles de partitions (en liaison avec des pavages du tore) qui donnent une nouvelle majoration de l'énergie minimale.Un dernier chapitre de perspectives présente plusieurs applications possibles des méthodes décrites dans la thèse.
2

Contributions à l'étude des partitions spectrales minimales / Contributions to the study of spectral minimal partitions

Léna, Corentin 13 December 2013 (has links)
Ce travail porte sur le problème des partitions minimales, à l'interface entre théorie spectrale et optimisation de forme. Une introduction générale précise le problème et présente des résultats, principalement dûs à B. Helffer, T. Hoffmann-Ostenhof et S. Terracini, qui sont utilisés dans le reste de la thèse.Le premier chapitre est une étude spectrale asymptotique du laplacien de Dirichlet sur une famille de domaines en dimension deux qui tend vers un segment. L'objectif est d'obtenir une localisation des lignes nodales dans la limite des domaines minces. En appliquant les résultats de Helffer, Hoffmann-Ostenhof et Terracini, on montre ainsi que les domaines nodaux des premières fonctions propres forment des partitions minimales.Le deuxième chapitre étudie les valeurs propres de certains opérateurs de Schrödinger sur un domaine plan avec condition au bord de Dirichlet. On considère des opérateurs qui ont un potentiel électrique nul et un potentiel magnétique d'un type particulier, dit d'Aharonov-Bohm, avec des singularités en un nombre fini de points appelés pôles. On démontre que les valeurs propres dépendent continuement des pôles. Dans le cas de pôles distincts et éloignés du bord, on prouve que cette dépendance est analytique lorsque la valeur propre est simple. On exprime de plus une condition suffisante pour que la fonction qui aux pôles associe une valeur propre présente un point critique. On utilise alors la caractérisation magnétique des partitions minimales pour montrer que l'énergie minimale est une valeur critique d'une de ces fonctions.Le troisième chapitre est un article écrit en collaboration avec Virginie Bonnaillie-Noël. Il porte sur une famille d'exemples, les secteurs angulaires de rayon unité et d'ouverture variable, dont on tente de déterminer les partitions minimales. On applique pour cela les théorèmes généraux rappelés dans l'introduction afin de déterminer les partitions nodales qui sont minimales. On s'intéresse plus particulièrement aux partitions minimales en trois domaines. En appliquant les idées du deuxième chapitre, on montre que pour certaines valeur de l'angle, il n'existe aucune partition minimale qui soit symétrique par rapport à la bissectrice du domaine. D'un point de vue quantitatif, on obtient des encadrements précis de l'énergie minimale.Le quatrième chapitre consiste en l'étude des partitions minimales de tores plats dont on fait varier le rapport entre longueur et largeur. On utilise une méthode numérique très différente de celle du troisième chapitre, basée sur un article de B. Bourdin, D. Bucur et É. Oudet. Elle consiste en une relaxation suivie d'une optimisation par un algorithme de gradient projeté. On peut ainsi tester des résultats théoriques antérieurs. Les résultats présentés suggèrent de plus la construction explicite de familles de partitions (en liaison avec des pavages du tore) qui donnent une nouvelle majoration de l'énergie minimale.Un dernier chapitre de perspectives présente plusieurs applications possibles des méthodes décrites dans la thèse. / This work is concerned with the problem of minimal partitions, at the interface between spectral theory and shape optimization. A general introduction gives a precise statement of the problem and recall results, mainly due to B. Helffer, T. Hoffmann-Ostenhof and S.Terracini, that are used in the rest of the thesis.The first chapter is an asymptotic spectral study of the Dirichlet Laplacian on a familly of two-dimensional domains converging to a line segment. The aim is to localize the nodal lines when the domains become very thin. With the help of the results of Helffer, Hoffmann-Ostenhof, and Terracini, we then show that the nodal domains of the first eigenfunctions give minimal partitions.The second chapter studies the eigenvalues of some Schrödinger operators on a domain with Dirichlet boundary conditions. We consider operators that have no electric potential and a so-called Aharonov-Bohm magnetic potential, which has singularities at a finite number of points called poles. We prove that the eigenvalues are continuous functions of the poles. When the poles are distinct and far from the boundary, we prove that this function is analytic, assuming the eigenvalue is simple. We also give a sufficient condition for the function to have a critical point. Using the magnetic characterization of minimal partitions, we show that the minimal enery is a critical value for one of these functions.The third chapter in an article written in collaboration with Virginie Bonnaillie-Noël. It studies minimal partitions for sectors of unit radius with a variable angular opening. We apply the general results presented in the introduction, together with numerical computations, to determine nodal partitions that are minimal. We focus on partitions into three domains. Using ideas from the second chapter, we show that, for some values of the angle, there is no minimal partition that is symmetric with respect to the bisector. Form a quantitative point of view, we obtain precise bounds on the minimal energy.The fourth chapter studies the minimal partitions of flat tori in function of the ratio between width and length. We use a numerical method that is quite different from chapter three, and is based on an article by B. Bourdin, D. Bucur, and É. Oudet. It consists in a relaxation of the problem, followed by optimization with the help of a projected gradient algorithm. The results shown here additionally suggest explicit families of partitions, which consist in tilings of tori by polygons, that give upper bounds on the minimal energy. In the last chapter we consider several possible applications of the methods described in the thesis.
3

Analyse asymptotique, spectrale et numérique pour quelques problèmes elliptiques issus de la physique ou de la mécanique

Bonnaillie-Noël, Virginie 08 June 2011 (has links) (PDF)
Mes travaux de recherche sont liés à l'analyse asymptotique, l'approximation numérique et la théorie spectrale de problèmes elliptiques. J'allie les résultats théoriques et les simulations numériques pour préciser le comportement des solutions : la théorie permettant de proposer des méthodes numériques plus performantes et de prévoir certaines difficultés numériques, les simulations illustrant parfois des comportements plus fins que ceux démontrés jusque-là ou suggérant de nouvelles conjectures. Ce document se découpe en quatre chapitres, chacun correspondant à un thème de recherche. Le premier thème de recherche que je vais aborder concerne l'analyse mathématique de la supraconductivité qui était le sujet de ma thèse. Cette thématique a fait l'objet de collaborations avec F. Alouges, M. Dauge, S. Fournais, B. Helffer, D.~Martin, N. Popoff, N. Raymond et G. Vial. Notre objectif est de comprendre l'influence de la géométrie du matériau sur l'apparition de la supraconductivité. La première étape consiste à étudier le spectre de l'opérateur de Schrödinger avec champ magnétique et paramètre semi-classique dans les domaines à coins. Nous avons établi un développement asymptotique des modes propres et montré que les vecteurs propres avaient une structure double échelle, ce qui rend les simulations numériques très délicates. Nous avons proposé une approche basée sur la méthode d'éléments finis nodaux de haut degré et mis en évidence l'effet tunnel pour des domaines symétriques. Ces résultats ont ensuite permis d'étudier les minimiseurs de la fonctionnelle de Ginzburg-Landau et d'établir la localisation du paramètre d'ordre qui rend compte de la densité des électrons supraconducteurs, lorsqu'on abaisse progressivement le champ magnétique appliqué. Très peu d'études avaient été réalisées pour les domaines à coins. Nous en avons maintenant une compréhension assez précise en dimension 2. Récemment, nous avons commencé l'étude en dimension 3 dans le cadre de la thèse de N. Popoff, avec M. Dauge. La deuxième partie de ce document présente un modèle simplifié pour le transport quantique dans des diodes à effet tunnel résonant. Elle résulte de collaborations avec A. Faraj, F. Nier et Y. Patel. Ce dernier a réalisé une analyse asymptotique fine de systèmes de Schrödinger-Poisson stationnaires, non linéaires uni-dimensionnels dans un régime hors-équilibre. Nous avons proposé une adaptation numérique de cette analyse afin de déterminer rapidement des diagrammes courant-tension et de bifurcation et montré la pertinence de ce modèle réduit en le comparant à un modèle 1D de Schrödinger-Poisson avec traitement numérique complet des états résonnants. Dans le cadre du projet ANR jeunes chercheurs n° JCJC06-139561 Macadam, je me suis intéressée à l'analyse multi-échelle et numérique de problèmes elliptiques perturbés, en collaboration avec D. Brancherie, M. Dambrine, S. Tordeux, F. Hérau et G. Vial. Ce projet consiste à étudier l'influence de petites perturbations géométriques sur la solution de problèmes elliptiques. Les cas d'une inclusion isolée ou de plusieurs bien séparées ont été largement étudiés. Nous considérons plus précisément le cas où la distance entre deux inclusions tend vers zéro mais reste grande par rapport à leur taille caractéristique. Nous donnons un développement asymptotique multi-échelle complet de la solution de l'équation de Laplace dans la situation de deux inclusions. Nous présentons également quelques simulations numériques basées sur une méthode de superposition multi-échelle de la solution non perturbée et d'un profil (solution normalisée de l'équation de Laplace dans le domaine extérieur obtenu par blow-up de la perturbation). Nous étendons ces techniques aux équations de l'élasticité linéaire afin de prédire le comportement à rupture de certains matériaux présentant des micro-défauts. Nous avons également proposé des méthodes pour calculer effectivement les profils intervenant dans le développement asymptotique. Ceci a soulevé des questions mathématiques liées à la perte de coercivité provenant de conditions de Ventcel dégénérées. Le dernier chapitre propose quelques résultats sur les partitions minimales, en collaboration avec B. Helffer, T. Hoffmann-Ostenhof, C. Léna et G. Vial. Nous souhaitons comprendre le lien entre la $k$-partition minimale, pour laquelle la plus grande première valeur propre du Laplacien-Dirichlet sur les $k$ sous-domaines est minimale parmi les $k$-partitions, et les ensembles nodaux des vecteurs propres du Laplacien avec condition de Dirichlet. Nous nous sommes focalisés sur le cas $k=3$ pour lequel on ne connaît pas, en général, de partition optimale même pour des géométries très simples telles que le carré ou le disque. En se restreignant aux configurations symétriques, nous utilisons la méthode d'éléments finis pour exhiber des candidats aux 3-partitions minimales symétriques du disque, du carré ou d'autres géométries. Cette étude numérique nous a conduits à des problèmes d'isospectralité que nous avons résolus en utilisant le Hamiltonien de Aharonov-Bohm. L'introduction de cet opérateur pour résoudre une question théorique a ouvert une nouvelle piste numérique qui consiste à calculer les modes propres par une méthode d'éléments finis sur un revêtement à deux feuillets et d'étudier le comportement des lignes nodales en fonction du point singulier. Cela nous a permis de dégager de nouveaux candidats aux partitions minimales.

Page generated in 0.1037 seconds