• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 23
  • 23
  • 18
  • 15
  • 15
  • 14
  • 12
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Large-Scale Testing of Low-Strength Cellular Concrete for Skewed Bridge Abutments

Remund, Tyler Kirk 01 September 2017 (has links)
Low-strength cellular concrete consists of a cement slurry that is aerated prior to placement. It remains a largely untested material with properties somewhere between those of soil, geofoam, and typical controlled low-strength material (CLSM). The benefits of using this material include its low density, ease of placement, and ability to self-compact. Although the basic laboratory properties of this material have been investigated, little information exists about the performance of this material in the field, much less the passive resistance behavior of this material in the field.In order to evaluate the use of cellular concrete as a backfill material behind bridge abutments, two large-scale tests were conducted. These tests sought to better understand the passive resistance, the movement required to reach this resistance, the failure mechanism, and skew effects for a cellular concrete backfill. The tests used a pile cap with a backwall face 5.5 ft (1.68 m) tall and 11 ft (3.35 m) wide. The backfill area had walls on either side running parallel to the sides of the pile cap to allow the material to fail in a 2D fashion. The cellular concrete backfill for the 30° skew test had an average wet density of 29.6 pcf (474 kg/m3) and a compressive strength of 57.6 psi (397 kPa). The backfill for the 0° skew test had an average wet density of 28.6 pcf (458 kg/m3) and a compressive strength of 50.9 psi (351 kPa). The pile cap was displaced into the backfill area until failure occurred. A total of two tests were conducted, one with a 30° skew wedge attached to the pile cap and one with no skew wedge attached.It was observed that the cellular concrete backfill mainly compressed under loading with no visible failure at the surface. The passive-force curves showed the material reaching an initial peak resistance after movement equal to 1.7-2.6% of the backwall height and then remaining near this strength or increasing in strength with any further deflection. No skew effects were observed; any difference between the two tests is most likely due to the difference in concrete placement and testing.
22

Numerical Analysis of Passive Force on Skewed BridgeAbutments with Reinforced Concrete Wingwalls

Snow, Scott Karl 01 April 2008 (has links)
Numerical Analysis of Passive Force on Skewed BridgeAbutments with Reinforced Concrete WingwallsScott Karl SnowDepartment of Civil and Environmental Engineering, BYU Master of Science Historically bridges with skewed abutments have proven more likely to fail during earthquake loadings (Toro et al, 2013) when compared to non-skewed bridges (Apirakvorapinit et al. 2012; Elnashai et al. 2010). Previous studies including small-scale laboratory tests by Jessee (2012), large-scale field tests by Smith (2014), and numerical modeling by Shamsabadi et al. (2006) have shown that 45° skewed bridge abutments experience a reduction in peak passive force by about 65%. With numerous skewed bridges in the United States, this study has great importance to the nation's infrastructure.The finite element models produced in this study model the large-scale field-testing performed by Smith (2014), which was performed to study the significant reduction in peak passive resistance for abutments with longitudinal reinforced concrete wingwalls. The finite element models largely confirm the findings of Smith (2014). Two models were created and designed to match the large-scale field tests and were used to calibrate the soil parameters for this study. Two additional models were then created by increasing the abutment widths from 11 feet to 38 feet to simulate a two-lane bridge. The 45° skewed 11-foot abutment experienced a 38% reduction in peak passive resistance compared to the non-skewed abutment. In contrast, the 45° skewed 38-foot abutment experienced a 65% reduction in peak passive resistance compared to the non-skewed abutment. When the wingwalls are extended 10 feet into the backfill the reduction decreased to 59% due to the change in effective skew angle.The finite element models generally confirmed the findings of Smith (2014). The results of the 11- and 38-foot abutment finite element models confirmed that the wingwall on the obtuse side of the 45° skewed abutments experienced approximately 4 to 5 times the amount of horizontal soil pressure and 5 times the amount of bending moment compared to the non-skewed abutment. Increases in the pressures and bending moments are likely caused by soil confined between the obtuse side of the abutment and the wingwall.A comparison of the 11- and 38-foot 45° skewed abutment models showed a decrease in the influence of the wingwalls as the abutment widened. The wingwall on the acute side of the 38-foot abutment developed approximately 50% of the horizontal soil pressure compared to the 11-foot abutment. The heave distribution of the 11-foot abutment showed approximately 1- to 2-inches of vertical displacement over a majority of the abutment backwall versus more than half of the 38-foot abutment producing ½ an inch or less.
23

Elliptical Rolling Link Toggle Mechanisms for Passive Force Closures with Self-Adjustment

Montierth, Jacob Ross 19 July 2007 (has links) (PDF)
This thesis presents elliptical rolling contact joints as an alternative to circular rolling contact and conventional revolute joints where high quality force transmission "low friction and backlash" with variable output are desired. Parameters specific to the joint and its position are developed in terms of relative link angles and elliptical surface geometry. These parameters are used to generate the basic forward kinematics for elliptical rolling link toggle mechanisms with oscillatory motion and high mechanical advantage. As large compressive loads are characteristic of such mechanisms, stress conditions are identified and principles for joint stability with variable, precision outputs are discussed. Finally, application is made to self-adjusting passive force closures with a case study of the MUSCLE Brake (Multi-toggle Self-adjusting Connecting-Linked Electromechanical) disc brake caliper. Elliptical rolling contact joints are shown to offer several benefits over circular rolling contact, including: reduced Hertz contact stresses and flexure bending stresses, variable output velocity, maximum use of contact interface by distributing small rotations across surfaces of small curvature, reduced forces on stabilizing members, increased mechanical advantage due to eccentricity, and no-slip pure rolling provided exclusively by connecting links (or flexures) without the need for gear teeth or friction.

Page generated in 0.0703 seconds