• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large-Scale Testing of Low-Strength Cellular Concrete for Skewed Bridge Abutments

Remund, Tyler Kirk 01 September 2017 (has links)
Low-strength cellular concrete consists of a cement slurry that is aerated prior to placement. It remains a largely untested material with properties somewhere between those of soil, geofoam, and typical controlled low-strength material (CLSM). The benefits of using this material include its low density, ease of placement, and ability to self-compact. Although the basic laboratory properties of this material have been investigated, little information exists about the performance of this material in the field, much less the passive resistance behavior of this material in the field.In order to evaluate the use of cellular concrete as a backfill material behind bridge abutments, two large-scale tests were conducted. These tests sought to better understand the passive resistance, the movement required to reach this resistance, the failure mechanism, and skew effects for a cellular concrete backfill. The tests used a pile cap with a backwall face 5.5 ft (1.68 m) tall and 11 ft (3.35 m) wide. The backfill area had walls on either side running parallel to the sides of the pile cap to allow the material to fail in a 2D fashion. The cellular concrete backfill for the 30<&degree> skew test had an average wet density of 29.6 pcf (474 kg/m3) and a compressive strength of 57.6 psi (397 kPa). The backfill for the 0<&degree> skew test had an average wet density of 28.6 pcf (458 kg/m3) and a compressive strength of 50.9 psi (351 kPa). The pile cap was displaced into the backfill area until failure occurred. A total of two tests were conducted, one with a 30<&degree> skew wedge attached to the pile cap and one with no skew wedge attached.It was observed that the cellular concrete backfill mainly compressed under loading with no visible failure at the surface. The passive-force curves showed the material reaching an initial peak resistance after movement equal to 1.7-2.6% of the backwall height and then remaining near this strength or increasing in strength with any further deflection. No skew effects were observed; any difference between the two tests is most likely due to the difference in concrete placement and testing.
2

Lehčené podlahy na bázi pěnobetonů a plynobetonů s využitím druhotných surovin / Lightweight floors based on aerated concrete and foam concrete with the use of secondary raw materials

Kapčuk, Pavel January 2014 (has links)
This thesis is oriented on development of new porous materials for industrial floors based foam concrete and not autoclaved aerated concrete with the possible use of secondary raw materials and natural lightweight aggregates instead of classic aggregates. The dry mixture should be stored in bags as ready to use with the addition only of water.
3

Vývoj nového druhu lehčeného podlahového potěru se samonivelační funkcí / Development of a new type of lightweight self-levelling floor screed

Šenk, Josef January 2015 (has links)
This thesis is focused on development of a new type of lightweight self-levelling floor screed. The aim of this thesis is to develop lightweight screed with self-levelling function, which could be stored in a dry mixture in bags or silos, designed for use with only addition of water.
4

Formulation et caractérisation physique d'un béton léger de mousse et à base d'argile : valorisation des sédiments fins de dragage / Mix design method and physics characterization of lightweight air-foam concrete using clay : valorization for dredged thin sediments

Zambon, Agnès 06 December 2018 (has links)
Une réutilisation des sédiments issus du dragage en tant que matière première dans la fabrication d’un béton directement sur le site du dragage est une voie de valorisation économique et écologique. La présente étude a pour but de valoriser la partie fine des sédiments qui ne trouve pas de solutions de valorisation efficaces. En effet la structure en feuillet de l’argile la rend sensible aux conditions hydriques et lui confère une importante capacité de rétention des polluants. Afin d’optimiser les volumes à valoriser, le béton est envisagé en substitution totale des granulats par la fraction fine des sédiments. Les résultats apportés par la littérature tendent à privilégier une application en remblai tels que le remplissage entre deux rideaux de palplanches, un remblaiement géotechnique ou de carrières. Un procédé d’incorporation d’une mousse à base de protéine animale lors de la fabrication du béton est utilisé dans le cadre de cette étude pour alléger le matériau (densité comprise entre 1,1 et 1,3). Ce type de matériau fait donc partie de la catégorie des bétons légers de mousse plus communément appelée LWFC (LightWeight Foamed Concrete). Dans cette étude le matériau est désigné par le sigle BAMS (Béton Allégé par l’incorporation d’une Mousse et à base de Sédiments). L’étude a été réalisée sur un sol modèle constitué de 80% de bentonite et de 20% de sable correcteur de diamètre 0,125mm. La méthode de formulation est basée sur la limite de liquidité du sol afin de prendre en compte l’absorption de l’eau. La caractérisation du BAMS se scinde en trois parties ; La première partie correspond à la caractérisation à l’état frais du BAMS. Elle met en exergue une optimisation de l’abaissement de la densité à partir d’une certaine quantité d’eau apportée par rapport à la limite de liquidité du sol. L’allégement du matériau par l’incorporation d’une mousse modifie les propriétés du matériau à l’état frais ; elle améliore la fluidité et retarde la prise du ciment. La deuxième partie correspond à la caractérisation mécanique du BAMS ; l’eau apportée pour optimiser l’allégement du matériau impacte la résistance mécanique qui est jugée acceptable à partir de 0,5MPa. Celle-ci peut être améliorée en augmentant la quantité de ciment qui doit cependant rester faible pour rentabiliser la voie de valorisation. Il y a donc un compromis inévitable entre résistance mécanique et densité. Les combinaisons (densité ; résistance mécanique) possibles et les paramètres de formulations permettant de les atteindre ont été étudiés. Des essais non-destructifs sont effectués afin de contrôler la résistance mécanique in situ. L‘étude du retrait linéaire indique une variation dimensionnelle importante du BAMS de l’ordre du cm/m qui peut être divisé par 100 avec une cure humide. La troisième partie correspond à la durabilité par l’étude des propriétés de transfert du BAMS dont les résultats mettent en avant une accessibilité partielle du réseau poreux crée par la mousse incorporée.Le relargage des polluants dans les sédiments est évalué par un essai de lixiviation effectué sur un sol modèle pollué artificiellement (cas non-immergeable). Cet essai permet de valider l’efficacité de leur inertage par le traitement au ciment et l’utilisation du matériau sans impact environnemental selon le critère PH14. / A re-use of dredged sediments as raw material in the process of making of concrete directly onthe site of the dredging is an interesting valorization as regards economy and environment.The present study aims at valuing the thin particles of sediments because they create aproblem in the valorization of dredged sediments. Indeed, the layer structure of the claymakes it prone to react to humidity conditions and confers it an important capacity to retainpolluting agents. To optimize the valued volumes, a total substitution of aggregates in theconcrete by the thin particles of sediments is envisaged. The results from the literature tend tofavor an application in embankment such as the filling between two sheet pile walls, a geotechnical embankment, a quarry embankment. An incorporation of an air-foam made ofanimal protein during the making of the concrete is used to reduce the density of the material(density between 1.1 and 1.3). This material is classified in the category of lightweight foam concrete called by the English abbreviation LWFC (LightWeight Foamed Concrete). In thisstudy the material is named BAMS acronym for “Béton Allégé par l’incorporation d’uneMousse et à base de Sédiments”. The study was realized with a model soil composed of 80%of bentonite clay and 20% of calibrated sand (diameter 0.125mm). The mix design method isbased on the liquidity limit of the soil considering its swelling. The characterization of theBAMS is split into three parts. The first part corresponds to the characterization of the freshstate of the BAMS. It highlights the optimization of the reduction of the density from aquantity of added water with regard to the liquidity limit of the soil. The incorporation of airfoam modifies the characteristics of the fresh state of the material. It improves the workability and delays the setting of cement. The second part corresponds to the mechanical characterization of the BAMS. The added water which optimizes the reduction of the density impacts the mechanical resistance which has to be over 0.5MPa. There is thus an inevitablecompromise between mechanical resistance and density. The possible combinations and themix design to get them have been studied. Non-destructive tests are done to simply check the mechanical performances on construction site. The study of the linear shrinkage highlights an important variation of the dimension of the BAMS. This can be limited by a wet cure. The third part corresponds to the durability by the study of the transfer properties of the BAMS.The results highlight a limited accessibility of the porous network. The release of polluting agents in sediments is estimated by a lixiviation test realized on BAMS made with a model soilartificially polluted (non immersible case). From the results we can conclude on the efficiency of the inerting of polluting agents by the cement treatment and therefore the use of the material is allowed without having an impact on environment (PH14).
5

En funktion- och miljöpåverkansanlays av materialet isobetong / A Property and Environmental Analysis of the Material Isobetong

Rosencrantz, Eric, Saether, Oskar January 2020 (has links)
Byggbranschen utvecklas konstant, strävan efter att utveckla nya och effektivare material ärstor. Några av de viktigaste egenskaperna som byggsektorn eftersöker är hög hållfasthet, lågvärmekonduktivitet och låg miljöpåverkan.Isobetong är ett nyligen framtaget material. Det är en typ av skumbetong med egenskaper ochfunktioner som skiljer sig från traditionell skumbetong ur hänseende på hållfasthet,värmekonduktivitet och miljöpåverkan.Syftet med denna undersökning är att identifiera Isobetongens karakteristiska egenskaper ochjämföra de med egenskaper av konkurrerande material. Resultatet föreslås tydliggöramaterialets styrkor och vidare utgöra en grund för fortsatt undersökning samt främja enutökad användning. De frågor vilket undersökningen formas kring är ’Vad har materialet förmiljöpåverkan?’ och ’Hur jämför sig materialet mot mineralull och cellplast gällande funktionoch miljöpåverkan?’.Resultatet visar att miljöpåverkan av materialet Isobetong varierar från 65,5 kg CO2-ekvivalenter per kubikmeter för dess produkt med lägst densitet, upp till 230,7 kg CO2-ekvivalenter per kubikmeter för produkten med högst densitet. Beräkningarna som utförts ijämförande syfte tyder på att Isobetong i genomsnitt inte är likställd med cellplast ellermineralull inom områdena för densitet, värmekonduktivitet och miljöpåverkan. Resultatet förtryckhållfastheten av Isobetong ger ett betydligt högre värde än de övriga materialen.Slutsatsen är att relativt mot de jämförda materialen kan inte Isobetong konkurrera med varesig cellplast- eller mineralullsisoleringar då högre krav ställs på densitet, värmekonduktivitetoch miljöpåverkan. I projekt där en god tryckhållfasthet krävs har Isobetong en klar fördel. / The construction industry is continuously developing, the strive to develop new and moreefficient materials is great. In the industry, some of the most sought for properties of theimproved materials are high strength, low thermal conductivity, and low environmentalimpact.Isobetong is a recently developed material. It is a variety of foam concrete with properties thatdiffer from traditional foam concrete regarding strength, thermal conductivity, andenvironmental impact.The purpose of this analysis is to identify characteristic properties of Isobetong and tocompare them to the properties of competitive materials. The results are proposed to clarifythe material’s strengths and to furthermore act as a foundation for continued research as wellas encouraging an increased usage. The questions the analysis is based on are ‘What is theenvironmental impact of the material?’ and ‘How does the material compare to mineral wooland polystyrene?’.The result displays an environmental impact of the material Isobetong to vary between 65,5kg CO2-equivalents per cubic meter for the product with the lowest density, up to 230,7 kgCO2-equivalents per cubic meter for the product with the highest density. The computationsthat have been completed for comparative purposes indicates that Isobetong on average is notequal to polystyrene or mineral wool in areas of density, thermal conductivity, orenvironmental impact. The result for the compressive strength of Isobetong yield aconsiderably higher value than the other materials.The conclusion is that relative to the compared materials is Isobetong unable to compete withneither polystyrene or mineral wool insulations when higher requirements are set for density,thermal conductivity, and environmental impact. For projects that require a notablecompressive strength does Isobetong show a clear advantage.
6

Large-Scale Testing of Low-Strength Cellular Concrete for Skewed Bridge Abutments

Remund, Tyler Kirk 01 September 2017 (has links)
Low-strength cellular concrete consists of a cement slurry that is aerated prior to placement. It remains a largely untested material with properties somewhere between those of soil, geofoam, and typical controlled low-strength material (CLSM). The benefits of using this material include its low density, ease of placement, and ability to self-compact. Although the basic laboratory properties of this material have been investigated, little information exists about the performance of this material in the field, much less the passive resistance behavior of this material in the field.In order to evaluate the use of cellular concrete as a backfill material behind bridge abutments, two large-scale tests were conducted. These tests sought to better understand the passive resistance, the movement required to reach this resistance, the failure mechanism, and skew effects for a cellular concrete backfill. The tests used a pile cap with a backwall face 5.5 ft (1.68 m) tall and 11 ft (3.35 m) wide. The backfill area had walls on either side running parallel to the sides of the pile cap to allow the material to fail in a 2D fashion. The cellular concrete backfill for the 30° skew test had an average wet density of 29.6 pcf (474 kg/m3) and a compressive strength of 57.6 psi (397 kPa). The backfill for the 0° skew test had an average wet density of 28.6 pcf (458 kg/m3) and a compressive strength of 50.9 psi (351 kPa). The pile cap was displaced into the backfill area until failure occurred. A total of two tests were conducted, one with a 30° skew wedge attached to the pile cap and one with no skew wedge attached.It was observed that the cellular concrete backfill mainly compressed under loading with no visible failure at the surface. The passive-force curves showed the material reaching an initial peak resistance after movement equal to 1.7-2.6% of the backwall height and then remaining near this strength or increasing in strength with any further deflection. No skew effects were observed; any difference between the two tests is most likely due to the difference in concrete placement and testing.
7

LCC MSE Walls

Smith, Joel 08 December 2023 (has links) (PDF)
Lightweight cellular concrete (LCC) is mainly a mixture of water, cement, and foam bubbles. LCC generally has a cast density between 20-60 pcf and an air content between 49-84%. LCC is often used as a fill material because it has a low unit weight which reduces settlement. LCC is increasingly being considered as a backfill behind Mechanically Stabilized Earth (MSE) walls and embankments. Although engineers are using LCC in MSE walls or free face walls (MSE wall without the concrete panels or reinforcements), there is presently a lack of information regarding the performance and behavior of LCC to guide them. This research attempts to answer questions on the design of MSE walls backfilled with LCC and free face LCC walls by providing a well-documented case history and evaluating if LCC can be modeled as a c-ϕ material. A steel frame test box (10 ft wide x 12 ft long x 10 ft high) with a MSE wall on one side was constructed for the research. The box was filled with four lifts of LCC with steel ribbed-strip reinforcements extending into the LCC behind the MSE wall panels at the center of each lift. After the LCC was cured, two static load tests were performed by applying a surcharge load to the surface of the LCC. In one test, surcharge pressure was applied adjacent to the MSE wall to produce failure of the wall system. In a second test, the surcharge pressure was placed adjacent to a free face of the LCC to produce failure. String potentiometers (string pots), load cells, pressure plates, and strain gages were used to measure the behavior of the MSE wall and free face wall during testing. These two tests provided a comparison between LCC behavior with a MSE wall relative to a LCC free face. Failure of the free face wall with unreinforced LCC backfill in this test can be predicted using Rankine’s lateral force equation using a c-ϕ model. Failure angle at the base of the free face wall was between 51-63° which corresponds with an average friction angle (ϕ) of 24° and cohesion (c) of 1575 psf with an upper bound ϕ = 34° and a c = 1285 psf. The presence of reinforcements in the LCC backfill behind the MSE wall increased the capacity of the wall to hold a surcharge load. The presence of reinforcements in the LCC behind MSE walls also led to a much more ductile surcharge pressure vs. lateral deflection curve for the MSE wall compared to the free face wall.

Page generated in 0.1025 seconds