• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 80
  • 46
  • 38
  • 37
  • 14
  • 14
  • 14
  • 12
  • 12
  • 11
  • 8
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Chemical aspects of the study Hamelia patens Jacq. / Aspectos quÃmicos do estudo de Hamelia patens Jacq.

Raimundo Regivaldo Gomes do Nascimento 12 February 2010 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / This work describes the phytochemical investigation of Hamelia patens (Rubiaceae) native from Guaramiranga montain, CearÃ, Brazil. Sucessive chromatographic treatment of the ethanol extract of leaves led to the isolation of the pentaciclic oxindole alkaloids pteropodine, isopteropodine, palmirine, and the new isopalmirine, besides the flavonoid kaempferol l-3-α-O-rhamnopyranosyl-(1-6)-β-D-galactopyranoside. The study of the ethanol extract of the stems led to the isolation of the steroids β-sitosterol and stigmasterol as mixture, stigmast-4-en-3,6-dione, and the triterpene ursolic acid. The ethanol extract of the trunk yielded vanillic acid and the β-sitosterol and stigmasterol glucosilated. The isolation of the chemical constituents were performed by the use of chromatographic techniques, including flash cromatography, thin layer crohromatography, preparative crhomatography, and preparative high performance liquid chromatography (HPLC). The strucutral charactherization were performed by the use of infrared, mass spectrometry and nuclear magnetic resonance, including one (1H NMR, 13C NMR and DEPT 135) and two-bidimensional pulse sequences (HMBC, HSQC, COSY e NOESY), and comparison with literature data. / Neste trabalho foi realizado a investigaÃÃo fitoquÃmica de Hamelia patens (Rubiaceae) nativa da Serra de Guaramiranga-CE. A realizaÃÃo de sucessivos tratamentos cromatogrÃficos a partir do extrato etanÃlico das folhas possibilitou o isolamento dos alcalÃides oxindÃlicos pentacÃclicos pteropodina, isopteropodina e palmirina, jà citados na literatura para a espÃcie, do alcalÃide isopalmirina de carÃter inÃdito na literatura, alÃm do flavonÃide canferol-3-O-α-L-rhamnopiranosil-(1→6)-β-D-galactopiranosÃdeo. O estudo do extrato etanÃlico dos talos possibilitou o isolamento dos esterÃides β-sitosterol e estigmasterol como mistura, do estigmast-4-en-3,6-diona, alÃm do triterpeno Ãcido ursÃlico. A partir do extrato etanÃlico do caule foram obtidos o Ãcido vanÃlico e a mistura de esterÃides β-sitosterol e estigmasterol glicosilados. Para o isolamento dos metabÃlitos secundÃrios foram empregadas tÃcnicas cromatogrÃficas convencionais como cromatografia em camada delgada, cromatografia filtrante, cromatografia flash, cromatografia preparativa e Cromatografia LÃquida de Alta EficiÃncia (CLAE). A caracterizaÃÃo estrutural dos compostos isolados foi realizada atravÃs de tÃcnicas espectroscÃpicas como infravermelho, espectrometria de massas e ressonÃncia magnÃtica nuclear, incluindo tÃcnicas uni (RMN 1H e RMN 13C e DEPT 135) e bidimensionais (HMBC, HSQC, COSY e NOESY), alÃm de comparaÃÃo com dados descritos na literatura.
32

Sphingolipids in <i>Physcomitrella patens</i>

Resemann, Hanno Christoph 31 December 2018 (has links)
No description available.
33

Novel Polyunsaturated N-acylethanolamines (NAE) and Their Role in Physcomitrella Patens

Kilaru, Aruna, Haq, Imadadul, Chilufya, Jedaidah, Devaiah, Shivakumar, Shinde, Sushas, Welti, Ruth 22 June 2017 (has links)
Anandamide (N-arachidonoylethanolamide, AEA), a 20C polyunsaturated (PU) N-acylethanolamine (NAE) influences many neurological functions in mammals. Although 20C PU-NAEs are considered unique to animals, they were recently discovered in early land plants but their metabolism and functions remain unknown. Comprehensive lipidomic analyses of Physcomitrella patens revealed not only abundance of arachidonic acid (AA, 20:4) and eicosapentaenoic acid (EPA, 20:5) but also their corresponding ethanolamides (AEA and EPEA, respectively). While moss showed increasing AA with development, 14% and 24% in protonemata and gametophyte tissues, respectively, EPA decreased from 7% in protonemata to ~1.3 % in gametophytes. An increase in 20:4- and decrease in 20:5- ethanolamides and their corresponding membrane precursors, phosphatidylethanolamides, also was observed during gametophyte development. Pharmacological studies revealed that AEA specifically inhibits polarized tip growth, which justifies the low endogenous levels of AEA in protonemata. To further determine the physiological relevance of these 20C PU-NAEs, a fatty acid amide hydrolase that catabolizes NAEs has been heterologously characterized. Furthermore, generation of metabolite mutants with altered NAE levels is underway. Overall, we identified two novel NAEs, AEA and EPEA in Physcomitrella, which may play an important role in regulation of moss growth and development, although the underlying mechanism is still unclear.
34

Serine/Arginine-rich proteins in Physcomitrella patens

Ring, Andreas January 2011 (has links)
Serine/Arginine-rich proteins (SR-proteins) have been well characterized in metazoans and in the flowering plant Arabidopsis thaliana. But so far no attempts on characterizing SR-proteins in the moss Physcomitrella patens have been done. SR-proteins are a conserved family of splicing regulators essential for constitutive- and alternative splicing. SR-proteins are mediators of alternative splicing (AS) and may be alternatively spliced themselves as a form of gene regulation. Three novel SR-proteins of the SR-subfamily were identified in P. patens. The three genes show conserved intron-exon structure and protein domain distribution, not surprising since the gene family has evidently evolved through gene duplications. The SR-proteins PpSR40 and PpSR36 show differential tissue-specific expression, whereas PpSR39 does not. Tissue-specific expression of SR-proteins has also been seen in A. thaliana. SR-proteins determine splice-site usage in a concentration dependent manner. SR-protein overexpression experiments in A. thaliana and Oryza sativa have shown alteration of splicing patterns of endogenous SR-proteins. Overexpression of PpSR40 did not alter the splicing patterns of PpSR40, PpSR36 and PpSR39. This suggests that they might not be a substrate for PpSR40. These first results of SR-protein characterization in P. patens may provide insights on the SR-protein regulation mechanisms of the common land plant ancestor.
35

Prozesstechnische Optimierung des molecular farming glykosylierter Proteine in Photo-Bioreaktoren mit dem Moos Physcomitrella patens

Lucumi Hernandez, Saulo Alexander January 2007 (has links)
Zugl.: Karlsruhe, Univ., Diss., 2007 / Hergestellt on demand. - Auch im Internet unter der Adresse http://uvka.ubka.uni-karlsruhe.de/shop/isbn/978-3-86644-216-0 verfügbar
36

Prozesstechnische Optimierung des molecular farming glykosylierter Proteine in Photo-Bioreaktoren mit dem Moos Physcomitrella patens

Lucumi Hernandez, Saulo Alexander January 2007 (has links)
Zugl.: Karlsruhe, Univ., Diss., 2007
37

Reverse genetic analysis of gene Pp1s148_40v6 in Physcomitrella patens : an AtMAX2 orthologue?

De Villiers, Ruan Morne 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The plant metabolite, strigolactone, has recently gained the status of phytohormone as the result of several studies that implicated its role in plant architecture. These studies would characteristically rely on the use of mutants, such as the rms lines that were generated in peas, that shared several characteristics. This method allowed for the identification of several genetic component of the shared pathway. It is now known that the biosynthesis of strigolactone is dependent on the sequential action of an isomerase (D27) and two carotenoid cleavage deoxygenases (CCD7 and CCD8). Furthermore, it is known that strigolactone perception is localised to the plant nucleus, where it interacts with an α/β-fold hydrolase (D14) which would concomitantly binds to target proteins. The F box protein (MAX2) is able to recognize this proteïen complex. Through a MAX2 dependent mechanism the target protein becomes tagged for proteolysis. However, this model, though intricate, has only really been shown in higher plants. The model bryophyte, Physcomitrella patens, serves as a useful tool in genetic studies due to its predisposition for homologous recombination. More recently it has also gained interest in studies pertaining to strigolactones, which has led to the generation of a Ppccd8Δ mutant. Compared to the wild type, the Ppccd8Δ line produces more protonemal tissue. Furthermore, exogenous strigolactones have also been shown to inhibit colony expansion. Here we shown that there is only a single candidate gene, PpMAX2, present in the P. patens genome that could serve as a homologue for the Arabidopsis thaliana MAX2. Furthermore, we show that a recombinant GFP:PpMAX2 localises to the nucleus of P. patens cells. A Ppmax2:: mutant was generated which, unexpectedly, did not show the phenotype of Ppccd8Δ. Ppmax2:: has an apparent inability to produce protonema and appears to rather dedicate its growth to the production of gametophores. A double mutant, Ppccd8Δ max2Δ was generated which also displayed the characteristic phenotype of Ppmax2::. It seems therefore that the activity of PpMAX2 is able to override that of PpCCD8. By employing a GUS reporter system, we showed that the promoter, PPpMAX2, is predominantly active within gametophore tissues. Taken together, these results suggest that the activity of PpMAX2 facilitates the transition of gametophore tissue to protonema tissue. Although exogenous strigolactones did not appear to affect the growth of the Ppmax2:: line as it did the PpWT or Ppccd8Δ lines, those responses that have been ascribed to strigolactones to date have mostly been observed in protonemal tissue. We therefore suspect that any strigolactone response that might have been elicited in Ppmax2:: would have been masked by its phenotype of predominantly protonemal tissue. We are therefore hesitant to make any sweeping statements in regards to the role PpMAX2 might have in strigolactone perception in P. patens. However, though we suspect that PpMAX2 might not be a true functional homologue for the characterised MAX2 homologues from higher plants, we suspect that it may well be the ancestral predecessor of MAX2. / AFRIKAANSE OPSOMMING: Strigolaktoon is ‘n metaboliet wat deur plante vervaardig word en is redelik onlangs as ’n fitohormoon geklassifiseer. Die klassifikasie as fitohormoon is die gevolg van verskeie studies wat strigolaktoon se rol in die plantstruktuur beklemtoon het. In hierdie studie is daar gebruik gemaak van mutante, soos onderandere die rms lyne, wat gegenereer is in ertjies, wat verskeie kenmerke deel. Sodoende is verskeie komponente van ’n gedeelde molekulêre padweg geïdentifiseer. Daar word tans verstaan dat die sintese van strigolaktoon afhanklik is van die stapsgewyse aksies van ’n isomerase (D27) en twee karotenoïedklewingsdeoksigenases (CCD7 en CCD8). Verder is dit bekend dat strigolaktoon waargeneem word in die plant nukleus deur te assosieer met ’n α/β-vou-hidrolase (D14) wat vervolgens met teikenproteïene bind. Die kompleks word deur ’n F-boks proteïen (MAX2) herken wat daartoe lei dat die teikenproteïen gemerk word vir proteolise; altans, dit is tans die model wat vir hoër plante aanvaar word. Die model briofiet, Physcomitrella patens, word dikwels aangewend in genetiese studies weens dit ’n hoër vatbaarheid vir homoloë rekombinasie het. Om P. patens te benut in navorsing wat die rol van strigolaktoon ondersoek is ook voordelig, aangesien daar reeds ’n Ppccd8Δ mutant beskikbaar is. In vergelyking met die wilde tipe, produseer Ppccd8Δ meer protonemale weefsel en blyk dit dat strigolaktoon die vermoë het om kolonie verspreiding te bekamp. Hier wys ons dat daar ’n enkele kandidaat geen, PpMAX2, in die genoom van die P. patens teenwoordig is wat as ’n homoloog vir die Arabidopsis thaliana MAX2 kan dien. Verder wys ons dat ’n rekombinante GFP:PpMAX2 proteïen wel na die selkern van P. patens selle lokaliseer. ’n Ppmax2:: mutant is gegenereer wat, onverwags, nie die fenotipe van Ppccd8Δ vertoon het nie. Ppmax2:: het ’n onvermoë om protonema te produseer en wy groei eerder aan die produksie van gametofiete. ’n Dubbele mutant, Ppccd8Δ max2Δ, is gegenereer wat ook die fenotipe van Ppmax2:: vertoon het; dus kom ons tot die gevolgtrekking dat die aktiwiteit van PpMAX2 dié van PpCCD8 oorheers. Deur gebruik te maak van ’n GUS verklikkersisteem kon ons aflei dat die aktiwiteit van die PPpMAX2 promotor hoofsaaklik tot die uitdrukking van PpMAX2 in gametofiet weefsel lei. Dit is moontlik dat die aktiwiteit PpMAX2 dus die oorgang van gametofoor weefsel na protonema weefsel te weg bring. Alhoewel strigolaktoon nie die groei van die Ppmax2:: lyn beïnvloed soos vir die PpWT of Ppccd8Δ lyne nie, vermoed ons dat die reaksie slegs in die protonemale weefsel waargeneem sal word. Daar kan tans nie met absolute sekerheid gesê word of PpMAX2 enigsins verbonde met strigolaktoon persepsie in mos is nie, tog vermoed ons dat PpMAX2 ’n primitiewe voorloper vir die gekarakteriseerde MAX2 homoloë van die hoër plante is.
38

COMPARATIVE ULTRASTRUCTURE OF APICAL CELLS AND DERIVATIVES IN BRYOPHYTES, WITH SPECIAL REFERENCE TO PLASMODESMATA

Mansouri, Katayoun 01 May 2012 (has links)
This study focused on the primary cell wall constituents and plasmodesmata (PD) density in three mosses and four liverwort apical cells (AC) and immediate derivatives. The three mosses have tetrahedral apical cells and the liverworts possess tetrahedral, hemidiscoid and lenticular AC geometries. The primary cell wall in the studied taxa is comprised of two layers. A fibrillar layer, which is the outer wall layer, contains compacted cellulosic fibrils, and represents the two adjacent primary walls and middle lamella, the latter of which is rarely discernible. An electron-lucent inner wall layer abuts the plasma membrane. This layer has faint fibrous materials that extend from the plasma membrane to the fibrillar layer. Generally, as the cell wall ages it thickens, the fibrillar layer increases in width while the electron-lucent wall stays more or less consistent in width. In the four liverworts, the most recent wall of the AC has the highest PD density in the apical region regardless of AC geometry. As the walls elongate, primary wall is laid down between PD, separating them and resulting in lower densities and wider PD diameters in older walls. The season of fixation and whether plants were studied from nature or culture have an influence on AC ultrastructure. A developmental study of Physcomitrella patents gametophores in four stages, bud, 2-leaved, 7-8-leaved and ~20-leaved, reveals that the primary cell wall constituents change slightly during development. Specifically, LM5 a RG-I pectin antibody against the galactan branch epitope is only localized in the fibrillar layer of young water-conducting cells in the 7-8-leaved and 20-leaved gametophores. LM20, an antibody against HG esterified pectins, does not localize in any of the cell walls during development. The distribution patterns for AGPs (JIM13 and LM2) are consistent during gametophore development and predominantly localize on the electron-lucent layer and wall/plasma membrane interface. However, LM2 is mainly localized on the fibrillar layer in 7-8-leaved cell walls. AGPs also localize on element of the cytoplasm. LM6, an antibody against an RG-I pectin with arabinan branch epitopes, also localizes AGPs and because it expressed similar distribution patterns as JIM13 and LM2 on the cell wall, it likely localizes AGP in Physcomitrella. In addition, LM6 localizes pectins on the fibrillar layer similar to LM5 and LM19 for HG unesterified pectins. Callose predominantly localizes at the PD neck region. This study provides the first documentation of changes in size and shape of AC with age in Physcomitrella patens gametophores. The PD densities of gametophytes examined in this study fall into the lineage-specific network of PD (LPD) group designated for sporophytes of monilophytes and Selaginella (heterosporous lycophyte) with single ACs. Takakia lepidozioides leafy shoot has a tetrahedral AC with a highly curved free surface. This peculiar moss has mucilage hair (MH) associated with axil of phyllids. Mucilage hair in both species are 3-celled with a forth epidermal cell as the base. However, occasional 2-celled MH is seen in T. ceratophylla. The ultrastructure of MH has similarities with other mosses and liverworts.
39

Elucidating the Role of N-acylethanolamine Mediated Signaling Pathway in Physcomitrella Patens

Haq, Imdadul, Kilaru, Aruna 01 January 2018 (has links)
No description available.
40

Anandamide-Mediated Growth, Morphological and Cellular Changes in Physcomitrella Patens

Shinde, Suhas, Chilufya, Jedaidah, Devaiah, Shivakumar, Welti, Ruth, Kilaru, Aruna 01 January 2017 (has links)
No description available.

Page generated in 0.0332 seconds