• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Accelerating Quantum Monte Carlo via Graphics Processing Units

Himberg, Benjamin Evert 01 January 2017 (has links)
An exact quantum Monte Carlo algorithm for interacting particles in the spatial continuum is extended to exploit the massive parallelism offered by graphics processing units. Its efficacy is tested on the Calogero-Sutherland model describing a system of bosons interacting in one spatial dimension via an inverse square law. Due to the long range nature of the interactions, this model has proved difficult to simulate via conventional path integral Monte Carlo methods running on conventional processors. Using Graphics Processing Units, optimal speedup factors of up to 640 times are obtained for N = 126 particles. The known results for the ground state energy are confirmed and, for the first time, the effects of thermal fluctuations at finite temperature are explored.
2

Path Integral Monte Carlo and Bose-Einstein condensation in quantum fluids and solids

Rota, Riccardo 20 December 2011 (has links)
Several microscopic theories point out that Bose-Einstein condensation (BEC), i.e., a macroscopic occupation of the lowest energy single particle state in many-boson systems, may appear also in quantum fluids and solids and that it is at the origin of the phenomenon of superfluidity. Nevertheless, the connection between BEC and superfluidity is still matter of debate, since the experimental evidences indicating a non zero condensate fraction in superfluid helium are only indirect. In the theoretical study of BEC in quantum fluids and solids, perturbative approaches are useless because of the strong correlations between the atoms, arising both from the interatomic potential and from the quantum nature of the system. Microscopic Quantum Monte Carlo simulations provide a reliable description of these systems. In particular, the Path Integral Monte Carlo (PIMC) method is very suitable for this purpose. This method is able to provide exact results for the properties of the quantum system, both at zero and finite temperature, only with the definition of the Hamiltonian and of the symmetry properties of the system, giving an easy picture for superfluidity and BEC in many-boson systems. In this thesis, we apply PIMC methods to the study of several quantum fluids and solids. We describe in detail all the features of PIMC, from the sampling methods to the estimators of the physical properties. We present also the most recent techniques, such as the high-order approximations for the thermal density matrix and the worm algorithm, used in PIMC to provide reliable simulations. We study the liquid phase of condensed 4He, providing unbiased estimations of the one-body density matrix g1(r). We analyze the model for g1(r) used to fit the experimental data, highlighting its merits and its faults. In particular we see that, even if it presents some difficulties in the description of the overall behavior of g1(r), it can provide an accurate estimation of the kinetic energy K and of the condensate fraction n0 of the system. Furthermore, we show that our results for n0 as a function of the pressure are in a good agreement with the most recent experimental results. The study of the solid phase of 4He is the most significant part of this thesis. The recent observation of non classical rotational inertia (NCRI) effects in solid helium has generated big interest in the study of an eventual supersolid phase, characterized at the same time by crystalline order and superfluidity. Nevertheless, until now it has been impossible to give a theoretical model able to describe all the experimental evidences. In this work, we perform PIMC simulations of 4He at high densities, according to different microscopic configurations of the atoms. In commensurate crystals we see that BEC does not appear, our model being able to reproduce the momentum distribution obtained form neutron scattering experiments. In a crystal with vacancies, we have been able to see a transition to a superfluid phase at temperatures in agreement with experimental results if the vacancy concentration is low enough. In amorphous solids, superfluid effects are enhanced but appear at temperatures higher than the experimental estimation for the transition temperature. Finally, we study also metastable disordered configurations in molecular para-hydrogen at low temperature. The aim of this study is to investigate if a Bose liquid other than helium can display superfluidity. Choosing accurately a ¿quantum liquid¿ initial configuration and the dimensions of the simulation box, we have been able to frustrate the formation of the crystal and to calculate the temperature dependence of the superfluid density, showing a transition to a superfluid phase at temperatures close to 1 K.
3

Path Integral Monte Carlo Simulations of Quantum Wires

January 2012 (has links)
abstract: One dimensional (1D) and quasi-one dimensional quantum wires have been a subject of both theoretical and experimental interest since 1990s and before. Phenomena such as the "0.7 structure" in the conductance leave many open questions. In this dissertation, I study the properties and the internal electron states of semiconductor quantum wires with the path integral Monte Carlo (PIMC) method. PIMC is a tool for simulating many-body quantum systems at finite temperature. Its ability to calculate thermodynamic properties and various correlation functions makes it an ideal tool in bridging experiments with theories. A general study of the features interpreted by the Luttinger liquid theory and observed in experiments is first presented, showing the need for new PIMC calculations in this field. I calculate the DC conductance at finite temperature for both noninteracting and interacting electrons. The quantized conductance is identified in PIMC simulations without making the same approximation in the Luttinger model. The low electron density regime is subject to strong interactions, since the kinetic energy decreases faster than the Coulomb interaction at low density. An electron state called the Wigner crystal has been proposed in this regime for quasi-1D wires. By using PIMC, I observe the zig-zag structure of the Wigner crystal. The quantum fluctuations suppress the long range correla- tions, making the order short-ranged. Spin correlations are calculated and used to evaluate the spin coupling strength in a zig-zag state. I also find that as the density increases, electrons undergo a structural phase transition to a dimer state, in which two electrons of opposite spins are coupled across the two rows of the zig-zag. A phase diagram is sketched for a range of densities and transverse confinements. The quantum point contact (QPC) is a typical realization of quantum wires. I study the QPC by explicitly simulating a system of electrons in and around a Timp potential (Timp, 1992). Localization of a single electron in the middle of the channel is observed at 5 K, as the split gate voltage increases. The DC conductance is calculated, which shows the effect of the Coulomb interaction. At 1 K and low electron density, a state similar to the Wigner crystal is found inside the channel. / Dissertation/Thesis / Ph.D. Physics 2012
4

Path Integral Quantum Monte Carlo Study of Coupling and Proximity Effects in Superfluid Helium-4

Graves, Max 01 January 2014 (has links)
When bulk helium-4 is cooled below T = 2.18 K, it undergoes a phase transition to a superfluid, characterized by a complex wave function with a macroscopic phase and exhibits inviscid, quantized flow. The macroscopic phase coherence can be probed in a container filled with helium-4, by reducing one or more of its dimensions until they are smaller than the coherence length, the spatial distance over which order propagates. As this dimensional reduction occurs, enhanced thermal and quantum fluctuations push the transition to the superfluid state to lower temperatures. However, this trend can be countered via the proximity effect, where a bulk 3-dimensional (3d) superfluid is coupled to a low (2d) dimensional superfluid via a weak link producing superfluid correlations in the film at temperatures above the Kosterlitz-Thouless temperature. Recent experiments probing the coupling between 3d and 2d superfluid helium-4 have uncovered an anomalously large proximity effect, leading to an enhanced superfluid density that cannot be explained using the correlation length alone. In this work, we have determined the origin of this enhanced proximity effect via large scale quantum Monte Carlo simulations of helium-4 in a topologically non-trivial geometry that incorporates the important aspects of the experiments. We find that due to the bosonic symmetry of helium-4, identical particle permutations lead to correlations between contiguous spatial regions at a length scale greater than the coherence length. We show that quantum exchange plays a large role in explaining the anomalous experimental results while simultaneously showing how classical arguments fall short of this task.
5

Quantum Dynamics in Biological Systems

Shim, Sangwoo 17 December 2012 (has links)
In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.
6

Estudo de efeitos quânticos na termodinâmica da matéria condensada : transições de fase a temperatura finita / Study of quantum effects in condensed matter thermodynamics : phase transitions at finite temperature

Brito, Bráulio Gabriel Alencar, 1983- 20 August 2018 (has links)
Orientador: Alex Antonelli / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-20T22:54:46Z (GMT). No. of bitstreams: 1 Brito_BraulioGabrielAlencar_D.pdf: 3210920 bytes, checksum: 1140e372f96bf86f5f06d96119eeb8e7 (MD5) Previous issue date: 2012 / Resumo: Neste trabalho apresentaremos a extensão dos métodos adiabatic switching (AS), reversible scaling (RS) e integração dinâmica de Clausius-Clapeyron (d-CCI) para o formalismo de integral de tragetória. Desenvolvemos programas de Monte Carlo de integrais de trajetória (PIMC) para implementar esses métodos a fim de incluir efeitos quânticos nos cálculos das energias livres e na determinação das curvas de coexistência de fase de sistemas a baixa temperatura. Aplicamos as aproximações primitivas e Li-broughton para a ação para escrever as matrizes densidade de alta temperatura dos sistemas estudados. Calculamos a curva de fusão do neônio utilizando o método de integração dinâmica de Clausius-Clapeyron quantico (q-dCCI) e comparamos nossos resultados com resultados encontrados na literatura. Determinamos a curva de coexistência diamante-grafite utilizando o potencial AIREBO e os métodos AS, RS e q-dCCI. Estudamos os efeitos da pressão sobre algumas propriedades termodinâmicas do grafite e do grafeno e a diversas temperaturas aplicando método PIMC juntamente dos métodos AS e RS / Abstract: In this work we present the extension of the methods adiabatic switching (AS), reversible scaling (RS), dynamical Clausius-Clapeyron integration (d-CCI) within the path integral formalism. We developed Path Integral Monte Carlo computer codes to implement these methods in order to include quantum effects in the calculation of free energies and in the determination of the phase coexistence curves of systems at low temperature. We applied the primitive and Li-Broughton approximations to the action to write the high temperature density matrices of the systems we studied. We calculated the melting curve of the neon using the quantum dynamical Clausius-Clapeyron (q-dCCI) and compare our results with results found at the literature. We determined the diamond-graphite coexistence curve using the AIREBO inter-atomic potential and the AS, RS e q-dCCI methods. We studied the pressure effects on some thermodynamic properties of the graphite and graphene at several temperatures using the method PIMC together with the AS and RS methods / Doutorado / Física / Doutor em Ciências
7

Free energy differences : representations, estimators, and sampling strategies

Acharya, Arjun R. January 2004 (has links)
In this thesis we examine methodologies for determining free energy differences (FEDs) of phases via Monte Carlo simulation. We identify and address three generic issues that arise in FED calculations; the choice of representation, the choice of estimator, and the choice of sampling strategy. In addition we discuss how the classical framework may be extended to take into account quantum effects. Key words: Phase Mapping, Phase Switch, Lattice Switch, Simulated Tempering, Multi-stage, Weighted Histogram Analysis Method, Fast Growth, Jarzynski method, Umbrella, Multicanonical, Path Integral Monte Carlo, Path Sampling, Multihamiltonian, fluctuation theorem.

Page generated in 0.3717 seconds