Spelling suggestions: "subject:"pathogenic""
131 |
The role of the tail of fungal kinesin-3 in binding to early endosomes and their role in plant pathogenicityBielska, Ewa January 2013 (has links)
The dimorphic fungus Ustilago maydis is a pathogen of maize and it was used for decades to understand the molecular basis of plant pathogenicity aspects. Recently, much effort went into understanding the cell biology that underlies the virulence of U. maydis. It was shown previously that early endosomes (EEs) move bidirectionally within fungal hyphal cells. Although it was shown that the motility of EEs facilitates growth of the infectious hypha and mutants defective for kinesin-3 (Kin3), the major EE transporter, exhibit impaired polarized growth, the importance of EEs and their motility in plant colonization is not known. The first part of this thesis is focused on the role of EE motility during plant infection. In collaboration with Natalie Steinberg, who performed the plant infection assays, I used a synthetic molecular anchor, K1rPX, to block the motility of EEs at early and late stages during the host plant infection and I found that EE motility is essential during the first two days of pathogenic development, when infectious hyphae exhibit most prominent elongation, whereas blockage of EE motility after 3 days post infection does not inhibit plant colonization. Moreover, I documented that the blockage of EE motility during early stages of the infection causes high plant defence response, which means that the pathogen becomes recognized by the host plant defence system. These results indicate that EE motility is crucial during initial stages of the plant host infection and enables colonization by U. maydis and additionally suggests involvement of EEs in some defence response machinery. The second part of the thesis addresses the relationship between Kin3, the major motor for EE motility, and the microtubule (MT) array. I demonstrate here that Kin3 uses all MT tracks available in the cell, which is in contrast to published results in other systems. In the third part I focused on the interaction between Kin3 and the EEs. I found that the pleckstrin homology (PH) domain localized at the distal part of the Kin3 tail is of minor importance for EE association. This conclusion is supported by in vivo experiments, showing that truncated Kin3PH, which lacks the PH domain, was still able to bind to the organelles. By systematic truncation of parts of the Kin3 tail I found two adjacent regions, a DUF3694 domain and a "linker" region, that are important for binding of Kin3 to EEs. By using a synthetic anchor composed of Kin1 rigor domain and selected Kin3 domains I proved that both domains anchor the EEs to MTs and inhibit EE motility. I also showed that the PH domain is not able to block EE motility. In collaboration with Dr. Nicholas Harmer, who performed structural modelling of selected PH domains, I demonstrated that the PH domain is likely to interact with the motor domain of Kin3. This result was confirmed by using a yeast-two hybrid approach and a protein affinity assay. This indicates a globular organization of the Kin3 motor, which was confirmed by a split-YFP assay in living cells. Deletion of the PH domain and most probably lack of intramolecular interaction between the tail and motor domain reduces Kin3 motility parameters like velocity, frequency and run length indicating that the interaction of the PH domain with the motor domain has a role in the control of Kin3 motility.
|
132 |
Determination of fungal gene expression in planta by qRT-PCR and characterization of putative pathogenicity related genes of Verticillium longisporumXu, Hai Quan 16 February 2011 (has links)
No description available.
|
133 |
Potencialių hospitalinės pneumonijos sukėlėjų Pseudomonas aeruginosa ir Klebsiella pneumoniae patogeniškumo veiksniai bei jų įtaka ligos eigai / Pathogenicity factors of potential hospital-acquired pneumonia pathogens, Pseudomonas aeruginosa and Klebsiella pneumoniae, and their influence on the course of diseaseVitkauskienė, Astra 09 June 2008 (has links)
Disertacijos tema: Potencialių hospitalinės pneumonijos sukėlėjų Pseudomonas aeruginosa ir Klebsiella pneumoniae patogeniškumo veiksniai bei jų įtaka ligos eigai
Darbo tikslas -ištirti Pseudomonas aeruginosa ir Klebsiella pneumoniae padermių, kolonizavusių apatinius kvėpavimo takus ar sukėlusių hospitalinę pneumoniją, patogeniškumo veiksnius ir jų įtaką hospitalinės pneumonijos eigai.
Uždaviniai:
• Ištirti hospitalinę pneumoniją sukėlusių ar apatinius kvėpavimo takus kolonizavusių Pseudomonas aeruginosa padermių patogeniškumo veiksnius - atsparumą serumo baktericidiniam poveikiui, gebėjimą įsiskverbti į kvėpavimo takų epitelio ląsteles, atsparumą antibiotikams ir O serogrupinę priklausomybę.
• Įvertinti Pseudomonas aeruginosa padermių patogeniškumo veiksnių tarpusavio sąsajas.
• Ištirti Klebsiella pneumoniae padermių, sukėlusių hospitalinę pneumoniją ar kolonizavusių apatinius kvėpavimo takus, gebėjimą gaminti plataus spektro beta laktamazes bei atsparumą antibiotikams.
• Įvertinti Pseudomonas aeruginosa ir Klebsiella pneumoniae padermių patogeniškumo veiksnių įtaką hospitalinės pneumonijos eigai.
Darbas yra pirmas Lietuvoje, kurio metu ne tik nustatytas Pseudomonas aeruginosa patogeniškumo veiksnys – atsparumas serumo baktericidiniam poveikiui, bet ir įvertinta galima šį patogeniškumo veiksnį įgijusių Pseudomonas aeruginosa padermių įtaka hospitalinės pneumonijos vystytis bei ligos eigai. Pirmą kartą apskritai vertintas Pseudomonas aeruginosa padermių gebėjimas įsiskverbti į... [toliau žr. visą tekstą] / The aim of the study:
To examine pathogenicity factors of Pseudomonas aeruginosa and Klebsiella pneumoniae strains, colonizing lower respiratory tract or causing hospital-acquired pneumonia, and to evaluate their influence on the course of hospital-acquired pneumonia.
Objectives of the sudy:
1. To examine pathogenicity factors – resistance to serum bactericidal activity, ability to penetrate epithelial cells of the respiratory tract, dependence of O serogroup, and resistance to antibiotics – of Pseudomonas aeruginosa strains, colonizing lower respiratory tract or causing hospital-acquired pneumonia.
2. To evaluate the relationship between pathogenicity factors of Pseudomonas aeruginosa strains.
3. To examine the ability of Klebsiella pneumoniae strains, colonizing lower respiratory tract or causing hospital-acquired pneumonia, to produce extended-spectrum beta-lactamases and resistance of these pathogen to antibiotics.
4. To evaluate the influence of pathogenicity factors of Pseudomonas aeruginosa and Klebsiella pneumoniae strains on the course of hospital-acquired pneumonia.
Such work is first in Lithuania, because we determined not only pathogenicity factors of Pseudomonas aeruginosa – i.e., resistance to bactericidal activity of serum, but also evaluated possible influence of Pseudomonas aeruginosa strains, having this pathogenicity factor, on hospital-acquired pneumonia development and outcome. Therefore, the ability of Pseudomonas aeruginosa strains to invasive into... [to full text]
|
134 |
Molecular Basis of Verticillium dahliae Pathogenesis on PotatoEl-Bebany, Ahmed Farag A. M. 09 December 2010 (has links)
Verticillium wilt is a serious disease in a wide range of economic crops worldwide. Verticillium wilt of potato is caused, primarily, by the fungus Verticillium dahliae. Disease management requires understanding of V. dahliae pathogenesis and interactions with potato, which was the main objective of this study. A differential potato-V. dahliae pathosystem was established where pathogenicity of four V. dahliae isolates with different levels of aggressiveness was evaluated on two potato cultivars, Kennebec (susceptible) and Ranger Russet (moderately resistant). External and internal symptoms and growth measurements revealed that isolates Vd1396-9 and Vs06-14 are highly and weakly aggressive, respectively. These two isolates were selected for transcriptomics and proteomics investigations to identify pathogenicity-related factors. Transciptomics analysis was conducted in both isolates after elicitation by root extracts from either Kennebec or Ranger Russet using a combinational approach involving subtractive hybridization and cDNA-AFLP. A total of 573 differentially expressed transcripts were detected in one or the other isolate. Among them, 185 transcripts of interest were recovered, re-amplified, sequenced and searched against NCBI and the Broad Institute V. dahliae genome databases for identification. The two contrasting-aggressiveness isolates were used for a comparative proteomics investigation. The first proteomic map of V. dahliae was established. The proteomics analysis was carried out using 2-Dimentional electrophoresis and mass spectrometry. Twenty five proteins were differentially expressed and identified in one or the other isolate. Many of the identified genes/proteins showed potential involvement in pathogenesis of V. dahliae or other fungi. Genes of stress response regulator A (oxidative stress tolerance factor), isochorismatase hydrolase (potential plant defense suppressor) and tetrahydroxynaphthalene reductase (involved in melanin and microsclerotia formation) were isolated from both isolates and cloned. Sequence analysis of these genes showed many differences that may explain their differential expression in the two isolates. Given that some of the identified genes/proteins are potentially involved in overcoming and suppressing plant defense, phenolics were profiled in Kennebec-inoculated with Vd1396-9 or Vs06-14 isolate. Chlorogenic, caffeic, ferulic acids, cis-jasmone and rutin accumulation showed variations after inoculation. The results obtained from this study will help understanding the V. dahliae-potato interactions and develop efficient strategies to control Verticillium wilt disease.
|
135 |
Contribution of the outer surface proteins of Borrelia burgdorferi s.l. to the pathogenesis of Lyme diseaseJonsson, Maria January 1994 (has links)
Borrelia burgdorferi s. l. is a spirochete which causes the multisystemic disorder Lyme disease. As the borreliae lack toxin production, the pathogenicity is thought to involve, at least in part, molecules from the outer surface. Most Lyme disease Borrelia strains express two major outer surface lipoproteins, OspA (31 kD) and OspB (34 kD), on their surface. However, some strains lack the expression of OspA and OspB, but express a smaller 21 to 25 kD OspC protein instead. This thesis focuses on the importance of these proteins in the pathogenesis of Lyme disease. Biochemical and immunochemical studies of the OspA and OspB proteins from strains of various geographic origins show considerable differences in the apparent molecular weights and in their reactivities to monoclonal antibodies. The cloning and sequencing of the ospAB opérons from strains of different origins has demonstrated that the heterogeneity is found also at the DNA level Comparison of the ospAB sequences allows the classification of the strains into three types, which coincide with the recent species designations, B. burgdorferi sensu stricto, B. afzelii and B. garinii The genes are located on a linear plasmid about 50 kb in size, and are cotranscribed as a single message. The expression of the osp operon in different strains was studied by Western blot and Northern blot analysis. The ospAB operon of strains expressing varying amounts of the Osp proteins was cloned and sequenced. The DNA sequence was found to be >99% identical. The regulation appears to be primarily at the transcriptional level. In patients who have received incomplete treatment, B. burgdorferi have been isolated several years after the onset of the disease. As mentioned above, the ospAB loci of different strains show considerable heterogeneity, and it has been speculated that the spirochetes evade the host’s immune system by antigenic variation of the Osp proteins. In a mouse model system it was shown that no variation of the osp genes occurs over the course of an infection, and that other escape mechanisms must be used. The OspB proteins in particular have been shown to be very heterogeneous in different isolates. The MAb 84C recognizes a wide variety of B. burgdorferi strains, and the binding epitope was mapped to a conserved region in the carboxyl terminus of the OspB protein with putative structural and/or functional importance. It is well known that antibodies can kill bacteria in the presence of complement and phagocytes. Some antibodies seem to have a bactericidal effect by themselves. H6831 is a monoclonal antibody recognizing the OspB protein of some B. burgdorferi strains. The bactericidal action of univalent FAb fragments from H6831 was further characterized, and the binding epitope was mapped to a very heterogeneous region of the carboxyl end of the OspB protein. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1994, härtill 5 uppsatser</p> / digitalisering@umu
|
136 |
CHARACTERIZATION OF <em>COLLETOTRICHUM</em> SPECIES CAUSING BITTER ROT OF APPLES IN KENTUCKY ORCHARDSMunir, Misbakhul 01 January 2015 (has links)
Multiple species of Colletotrichum can cause bitter rot disease of apple, but the identities and relative representation of the species causing the disease in Kentucky are unknown. A total of 475 Colletotrichum isolates were collected from diseased apples in 25 counties and characterized both morphologically and by using various molecular approaches. Four morphotypes corresponded to reported descriptions of bitter rot species. Morphotype 1, distinguished by the production of a pink color on potato dextrose agar (PDA), orange conidial masses, and fusiform spores, was consistent with C. acutatum. Morphotype 2, which produced gray or white mycelial colonies with orange conidial masses and fusiform spores, was also similar to C. acutatum. Morphotype 3 had abundant gray mycelium and rounded spores and was identical to C. gloeosporioides. Morphotype 4 produced ascospores and resembled Glomerella cingulata. Species-specific polymerase chain reaction (PCR) indicated that both Morphotype 1 and Morphotype 2 belonged to the C. acutatum species complex, whereas Morphotype 3 and Morphotype 4 corresponded to the C. gloeosporioides complex. Multigene sequence analyses revealed that sample isolates belonged to several newly erected species within these species complexes. Morphotype 1 was identified as C. fioriniae, which resides within the C. acutatum species complex. Morphotype 2 was identified as C. nymphaeae, which is also a species within the C. acutatum species complex. Some isolates of Morphotype 3 were identified as C. siamense and some as C. theobromicola; both species are grouped within the C. gloeosporioides species complex. Morphotype 4 was identified as C. fructicola, which is also placed within the C. gloeosporioides species complex. C. fioriniae was the most common species causing bitter rot in Kentucky, comprising more than 70% of the isolates. Molecular fingerprinting using random amplified polymorphic DNA (RAPD) suggested that isolates within C. fioriniae belonged to a relatively homogeneous population, while isolates within C. siamense, C. theobromicola and C. fructicola were more diverse. Infectivity tests on detached fruit showed that C. gloeosporioides species-complex isolates were more aggressive than isolates in the C. acutatum species complex. However, isolates within the C. acutatum species complex produced more spores on lesions compared to isolates within the C. gloeosporioides species complex. Aggressiveness varied among individual species within a species complex. C. siamense was the most aggressive species identified in this study. Within the C. acutatum species complex, C. fioriniae was more aggressive than C. nymphaeae, causing larger, deeper lesions. Apple cultivar did not have significant effect on lesion development. However, Colletotrichum species produced more spores on Red Stayman Winesap than on Golden Delicious. Fungicide sensitivity tests revealed that the C. acutatum species complex was more tolerant to thiophanate-methyl, myclobutanil, trifloxystrobin, and captan compared to the C. gloeosporioides species complex. The study also revealed that mycelial growth of C. siamense was more sensitive to tested fungicides compared to C. fructicola and C. theobromicola. These research findings emphasize the importance of accurate identification of Colletotrichum species within each species complex, since they exhibit differences in pathogenicity and fungicide sensitivity.
|
137 |
Characterisation of Xanthomonas campestris pv. campestris isolates from South Africa using genomic DNA fingerprinting and pathogenicity tests / by Lizyben ChidambaChidamba, Lizyben January 2011 (has links)
Black rot caused by Xanthomonas campestris pv. campestris (X. c pv. campestris) is a major disease constraint to cabbage production. The control of black rot is difficult and resistant cultivars could play an important role in reducing the losses due to the disease. Information on the distribution and diversity of X. c pv. campestris is critical before any meaningful disease resistance screening can be done. However, little is known about the diversity and international significance of South African X. c pv. campestris strains. To assess the genetic diversity and international significance of X. c pv. campestris strains in South Africa, strains of the pathogen were obtained from cabbage growing districts in Gauteng, Mpumalanga and North West Provinces of South Africa in 2010. International strains were obtained from international culture collections. Isolates from South Africa were purified and race typed using differential sets of Brassica spp according to Nickerson–Zwaan protocols. Four races, race 1(14%), race 3 (7%), race 4 (68%) and race 6 (10%) of the pathogen were identified. Repetitive DNA polymerase chain reaction–based fingerprinting using Eric– and Box–primers were used to assess the genetic diversity. Polyacrylamide gel electrophoresis allowed clear and reproducible differentiation of the PCR products. Of the amplified loci for South African isolates 5 loci were present in at least 90 % of the isolates for Eric–profiles and 6 in at least 80% of the isolates for Box–profiles. Of these prominent loci, none had corresponding high presence in international isolates. While no loci had a presence greater than 51% and 61% for Eric– and Box– profiles in international isolates, respectively, several loci among South African isolates were unique to isolates from specific geographic origin. Generated fingerprints of X. c pv. campestris were similar for the South African isolates and distinguishable from those of X. c pv. armoraciae and X. c pv. raphani reference strains. However, when international X. c pv. campestris were considered, no profile pattern was observed to be unique to international X. c pv. campestris isolates as was the case with South African isolates. Eric– and Box–PCR profiles of international isolates varied widely with some isolates having profile patterns similar to those of reference strains. Cluster analysis divided X. c pv. campestris into two major groups, the South African group and the international isolates group. The South African group could be divided into subgroups, which clustered according to the geographical origin of the isolates. The same was observed for international isolates, which generally clustered isolates according to country of origin. However, isolates from different countries also clustered together. A few X. c pv. campestris strains of international origin clustered with the South African isolates group. Furthermore, a few South African isolates were clustered in the international isolate group. Although X. c pv. campestris distribution may be unique to its geographical origin, our findings, based on the present data set, suggest wide spread of the pathogen both at national and international level. The existence of different races, genetic variability and international distribution of the pathogen should be considered when resistant crucifer cultivars are bred to control black rot of crucifers / Thesis (M.Sc. (Microbiology))--North-West University, Potchefstroom Campus, 2011.
|
138 |
Evaluation of the Genetic Differences Between Two Subtypes of Campylobacter fetus (Fetus and Venerealis) in CanadaMukhtar, Lenah 19 August 2013 (has links)
The pathogen Campylobacter fetus (CF) is classified into two subspecies, Campylobacter fetus subspecies fetus (CFF) and Campylobacter fetus subspecies venerealis (CFV). Even though CFF and CFV are genetically closely related, they exhibit differences in their host adaptation; CFF inhabits the gastrointestinal tract of both humans and several animal species, while classical CFV is specific to the bovine genital tract and is of particular concern with respect to international bovine trade regulation. Traditionally, differentiation between the two subspecies has been achieved using a limited number of biochemical tests but more rapid and definitive genetic methods of discrimination are desired. A recent study suggested that the presence of a genomic island only in CFV could discriminate between the two sub- species but this hypothesis could not be confirmed on a collection of isolates originating in Canada.
To identify alternative gene targets that would support accurate subspecies discrimination, this study has applied several approaches including suppression subtractive hybridization and whole genome sequencing supplemented with optical mapping. A subtractive hybridization screen, using a well-characterized CFV isolate recovered during routine screening of bulls in an Artificial Insemination center in western Canada and that lacked much of the genomic island and a typical Canadian CFF isolate, yielded 50 clones; characterization of these clones by hybridization screening against selected CF isolates and by nucleotide sequence BLAST analysis identified three potentially CFV-specific clones that contained inserts originating from a second genomic island. Further screening using a larger CF sample set found that only Clone #35 was truly CFV-specific. Optical maps (NcoI digest) of the Canadian CFF and CFV isolates used for the subtractive hybridization showed that certain regions of these genomes were quite distinct from those of two reference strains. Whole genome sequencing of these two isolates identified two target genes (PICFV5_ORF548 and CFF_Feature #3) that appear to be selectively retained in the two subspecies. Screening of a collection of CF isolates by PCRs targeting these three loci (SSH_Clone #35, PICFV5_ORF548 and CFF_Feature #3) supported their use for subspecies discrimination. This work demonstrates the complex genomic diversity associated with these CF subtypes and the challenge posed by their discrimination using limited genetic loci.
|
139 |
Molecular Basis of Verticillium dahliae Pathogenesis on PotatoEl-Bebany, Ahmed Farag A. M. 09 December 2010 (has links)
Verticillium wilt is a serious disease in a wide range of economic crops worldwide. Verticillium wilt of potato is caused, primarily, by the fungus Verticillium dahliae. Disease management requires understanding of V. dahliae pathogenesis and interactions with potato, which was the main objective of this study. A differential potato-V. dahliae pathosystem was established where pathogenicity of four V. dahliae isolates with different levels of aggressiveness was evaluated on two potato cultivars, Kennebec (susceptible) and Ranger Russet (moderately resistant). External and internal symptoms and growth measurements revealed that isolates Vd1396-9 and Vs06-14 are highly and weakly aggressive, respectively. These two isolates were selected for transcriptomics and proteomics investigations to identify pathogenicity-related factors. Transciptomics analysis was conducted in both isolates after elicitation by root extracts from either Kennebec or Ranger Russet using a combinational approach involving subtractive hybridization and cDNA-AFLP. A total of 573 differentially expressed transcripts were detected in one or the other isolate. Among them, 185 transcripts of interest were recovered, re-amplified, sequenced and searched against NCBI and the Broad Institute V. dahliae genome databases for identification. The two contrasting-aggressiveness isolates were used for a comparative proteomics investigation. The first proteomic map of V. dahliae was established. The proteomics analysis was carried out using 2-Dimentional electrophoresis and mass spectrometry. Twenty five proteins were differentially expressed and identified in one or the other isolate. Many of the identified genes/proteins showed potential involvement in pathogenesis of V. dahliae or other fungi. Genes of stress response regulator A (oxidative stress tolerance factor), isochorismatase hydrolase (potential plant defense suppressor) and tetrahydroxynaphthalene reductase (involved in melanin and microsclerotia formation) were isolated from both isolates and cloned. Sequence analysis of these genes showed many differences that may explain their differential expression in the two isolates. Given that some of the identified genes/proteins are potentially involved in overcoming and suppressing plant defense, phenolics were profiled in Kennebec-inoculated with Vd1396-9 or Vs06-14 isolate. Chlorogenic, caffeic, ferulic acids, cis-jasmone and rutin accumulation showed variations after inoculation. The results obtained from this study will help understanding the V. dahliae-potato interactions and develop efficient strategies to control Verticillium wilt disease.
|
140 |
Characterisation of Xanthomonas campestris pv. campestris isolates from South Africa using genomic DNA fingerprinting and pathogenicity tests / by Lizyben ChidambaChidamba, Lizyben January 2011 (has links)
Black rot caused by Xanthomonas campestris pv. campestris (X. c pv. campestris) is a major disease constraint to cabbage production. The control of black rot is difficult and resistant cultivars could play an important role in reducing the losses due to the disease. Information on the distribution and diversity of X. c pv. campestris is critical before any meaningful disease resistance screening can be done. However, little is known about the diversity and international significance of South African X. c pv. campestris strains. To assess the genetic diversity and international significance of X. c pv. campestris strains in South Africa, strains of the pathogen were obtained from cabbage growing districts in Gauteng, Mpumalanga and North West Provinces of South Africa in 2010. International strains were obtained from international culture collections. Isolates from South Africa were purified and race typed using differential sets of Brassica spp according to Nickerson–Zwaan protocols. Four races, race 1(14%), race 3 (7%), race 4 (68%) and race 6 (10%) of the pathogen were identified. Repetitive DNA polymerase chain reaction–based fingerprinting using Eric– and Box–primers were used to assess the genetic diversity. Polyacrylamide gel electrophoresis allowed clear and reproducible differentiation of the PCR products. Of the amplified loci for South African isolates 5 loci were present in at least 90 % of the isolates for Eric–profiles and 6 in at least 80% of the isolates for Box–profiles. Of these prominent loci, none had corresponding high presence in international isolates. While no loci had a presence greater than 51% and 61% for Eric– and Box– profiles in international isolates, respectively, several loci among South African isolates were unique to isolates from specific geographic origin. Generated fingerprints of X. c pv. campestris were similar for the South African isolates and distinguishable from those of X. c pv. armoraciae and X. c pv. raphani reference strains. However, when international X. c pv. campestris were considered, no profile pattern was observed to be unique to international X. c pv. campestris isolates as was the case with South African isolates. Eric– and Box–PCR profiles of international isolates varied widely with some isolates having profile patterns similar to those of reference strains. Cluster analysis divided X. c pv. campestris into two major groups, the South African group and the international isolates group. The South African group could be divided into subgroups, which clustered according to the geographical origin of the isolates. The same was observed for international isolates, which generally clustered isolates according to country of origin. However, isolates from different countries also clustered together. A few X. c pv. campestris strains of international origin clustered with the South African isolates group. Furthermore, a few South African isolates were clustered in the international isolate group. Although X. c pv. campestris distribution may be unique to its geographical origin, our findings, based on the present data set, suggest wide spread of the pathogen both at national and international level. The existence of different races, genetic variability and international distribution of the pathogen should be considered when resistant crucifer cultivars are bred to control black rot of crucifers / Thesis (M.Sc. (Microbiology))--North-West University, Potchefstroom Campus, 2011.
|
Page generated in 0.0725 seconds