Spelling suggestions: "subject:"pattern recognition anda classification"" "subject:"pattern recognition ando classification""
1 |
Example Based Learning for View-Based Human Face DetectionSung, Kah Kay, Poggio, Tomaso 24 January 1995 (has links)
We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system.
|
2 |
A homogeneous hierarchical scripted vector classification network with optimisation by genetic algorithm : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Engineering in Electrical and Computer Engineering at the University of Canterbury, Christchurch, New Zealand /Wright, Hamish M. January 1900 (has links)
Thesis (M.E.)--University of Canterbury, 2007. / Typescript (photocopy). "August 2007." Includes bibliographical references (leaves [105]-109). Also available via the World Wide Web.
|
3 |
A New Measure of Classifiability and its ApplicationsDong, Ming 08 November 2001 (has links)
No description available.
|
4 |
Análise e extração de características de imagens termográficas utilizando componentes principaisSantos, Gilnete Leite dos [UNESP] 15 July 2010 (has links) (PDF)
Made available in DSpace on 2014-08-13T14:50:31Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-07-15Bitstream added on 2014-08-13T18:01:19Z : No. of bitstreams: 1
santos_gl_me_ilha.pdf: 4835852 bytes, checksum: 8f5c7964f7834bad1240378b2d45737b (MD5) / As técnicas de termografia vêm atualmente ganhando espaço como técnicas de manutenção preditiva, principalmente, por seu caráter não invasivo (ferramenta de não contato) que possibilita o monitoramento do aquecimento de máquinas e equipamentos em operação ou mesmo energizados. A utilização de câmeras termográficas hoje é uma realidade em vários setores industriais para monitoramento e detecção de falhas com base na temperatura. Entretanto, a utilização de câmaras termográficas na manutenção não deve se restringir apenas à avaliação da temperatura, uma vez que as imagens termográficas são sinais que apresentam padrões complexos que podem captar as diferentes características e condição de operação do equipamento. Outras informações além da temperatura poderiam ser observadas para uma avaliação mais consistente do estado de operação do equipamento. Este trabalho discute a utilização da técnica da estatística multivariada, Análise de Componentes Principais (ACP) para o processamento e análise de um conjunto de imagens termográficas. Essa proposta visa à identificação de padrões associados às variações térmicas das imagens, bem como, a interpretação desses dados em termos da sua variabilidade espacial/temporal para aplicação na manutenção preditiva com base na termografia. Num primeiro momento a técnica foi aplicada para a avaliação de um conjunto de dados (imagens térmicas) obtidos a partir da simulação do aquecimento de um dado componente (chave elétrica), cujo objetivo foi testar e verificar a validade da proposta e do programa desenvolvido. Posteriormente a técnica foi aplicada para o acompanhamento e avaliação do aquecimento de componentes de um modelo simplificado de um painel de telefonia, formado por blocos de alumínio fixados em uma placa de acrílico. A análise no modo espacial e no modo temporal do conjunto de ... (Resumo completo, clicar acesso eletrônico abaixo) / Thermography techniques are currently gaining ground as predictive maintenance techniques, mainly due to its non-invasive character (non-contact tool) that allows the monitoring of heating condition of machines and equipment also in operation and even energized. The use of thermographic cameras is now a reality in many industrial and electrical sectors for monitoring and fault detection based on temperature. However, the use of thermal imagers in the maintenance should not be restricted to only the evaluation of temperature, since the thermographic images are signs that show complex patterns and they can capture the different characteristics of the actual condition of the monitored equipment. Information other than temperature could be observed for a more consistent evaluation of its state of operation. This paper discusses the propose of use of the multivariate analysis technique, Principal Component Analysis (PCA) for the processing and analysis of a series of thermographic images in order to identify patterns associated with temperature variations of the images, as well as, the interpretation of these data in terms of their spatial/temporal variability. Initially the technique was used to the analysis of data (thermal images) obtained from the simulation of heating conditions of a component (electric switch) aiming at to test and verify the validity of the proposal and program development. Later the technique was applied to the monitoring and evaluation of the heating condition of components of a simplified model of a telephone panel, formed by aluminum blocks fixed in a plate of acrylic. The analysis in the spatial and temporal mode of the set of thermograms obtained for different heating conditions of the blocks, it showed that it is possible to verify and establish correlations between the Principal Components and the thermal profile of the system
|
5 |
Análise e extração de características de imagens termográficas utilizando componentes principais /Santos, Gilnete Leite dos. January 2010 (has links)
Orientador: João Antonio Pereira / Banca: Amarildo Tabone Paschoalini / Banca: Renê Pegoraro / Resumo: As técnicas de termografia vêm atualmente ganhando espaço como técnicas de manutenção preditiva, principalmente, por seu caráter não invasivo (ferramenta de não contato) que possibilita o monitoramento do aquecimento de máquinas e equipamentos em operação ou mesmo energizados. A utilização de câmeras termográficas hoje é uma realidade em vários setores industriais para monitoramento e detecção de falhas com base na temperatura. Entretanto, a utilização de câmaras termográficas na manutenção não deve se restringir apenas à avaliação da temperatura, uma vez que as imagens termográficas são sinais que apresentam padrões complexos que podem captar as diferentes características e condição de operação do equipamento. Outras informações além da temperatura poderiam ser observadas para uma avaliação mais consistente do estado de operação do equipamento. Este trabalho discute a utilização da técnica da estatística multivariada, Análise de Componentes Principais (ACP) para o processamento e análise de um conjunto de imagens termográficas. Essa proposta visa à identificação de padrões associados às variações térmicas das imagens, bem como, a interpretação desses dados em termos da sua variabilidade espacial/temporal para aplicação na manutenção preditiva com base na termografia. Num primeiro momento a técnica foi aplicada para a avaliação de um conjunto de dados (imagens térmicas) obtidos a partir da simulação do aquecimento de um dado componente (chave elétrica), cujo objetivo foi testar e verificar a validade da proposta e do programa desenvolvido. Posteriormente a técnica foi aplicada para o acompanhamento e avaliação do aquecimento de componentes de um modelo simplificado de um painel de telefonia, formado por blocos de alumínio fixados em uma placa de acrílico. A análise no modo espacial e no modo temporal do conjunto de ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Thermography techniques are currently gaining ground as predictive maintenance techniques, mainly due to its non-invasive character (non-contact tool) that allows the monitoring of heating condition of machines and equipment also in operation and even energized. The use of thermographic cameras is now a reality in many industrial and electrical sectors for monitoring and fault detection based on temperature. However, the use of thermal imagers in the maintenance should not be restricted to only the evaluation of temperature, since the thermographic images are signs that show complex patterns and they can capture the different characteristics of the actual condition of the monitored equipment. Information other than temperature could be observed for a more consistent evaluation of its state of operation. This paper discusses the propose of use of the multivariate analysis technique, Principal Component Analysis (PCA) for the processing and analysis of a series of thermographic images in order to identify patterns associated with temperature variations of the images, as well as, the interpretation of these data in terms of their spatial/temporal variability. Initially the technique was used to the analysis of data (thermal images) obtained from the simulation of heating conditions of a component (electric switch) aiming at to test and verify the validity of the proposal and program development. Later the technique was applied to the monitoring and evaluation of the heating condition of components of a simplified model of a telephone panel, formed by aluminum blocks fixed in a plate of acrylic. The analysis in the spatial and temporal mode of the set of thermograms obtained for different heating conditions of the blocks, it showed that it is possible to verify and establish correlations between the Principal Components and the thermal profile of the system / Mestre
|
6 |
Combined decision making with multiple agentsSimpson, Edwin Daniel January 2014 (has links)
In a wide range of applications, decisions must be made by combining information from multiple agents with varying levels of trust and expertise. For example, citizen science involves large numbers of human volunteers with differing skills, while disaster management requires aggregating information from multiple people and devices to make timely decisions. This thesis introduces efficient and scalable Bayesian inference for decision combination, allowing us to fuse the responses of multiple agents in large, real-world problems and account for the agents’ unreliability in a principled manner. As the behaviour of individual agents can change significantly, for example if agents move in a physical space or learn to perform an analysis task, this work proposes a novel combination method that accounts for these time variations in a fully Bayesian manner using a dynamic generalised linear model. This approach can also be used to augment agents’ responses with continuous feature data, thus permitting decision-making when agents’ responses are in limited supply. Working with information inferred using the proposed Bayesian techniques, an information-theoretic approach is developed for choosing optimal pairs of tasks and agents. This approach is demonstrated by an algorithm that maintains a trustworthy pool of workers and enables efficient learning by selecting informative tasks. The novel methods developed here are compared theoretically and empirically to a range of existing decision combination methods, using both simulated and real data. The results show that the methodology proposed in this thesis improves accuracy and computational efficiency over alternative approaches, and allows for insights to be determined into the behavioural groupings of agents.
|
7 |
Využití pokročilých statistických metod pro zpracování obrazu fluorescenční emise rostlin ovlivněných lokálním biotickým stresem / Utilization of advanced statistical methods for processing of florescence emission of plants affected by local biotic stressMATOUŠ, Karel January 2008 (has links)
Chlorophyll fluorescence imaging is noninvasive technique often used in plant physiology, molecular biology and precision farming. Captured sequences of images record the dynamic of chlorophyll fluorescence emission which contain the information about spatial and time changes of photosynthetic activity of plant. The goal of this Ph.D. thesis is to contribute to the development of chlorophyll fluorescence imaging by application of advanced statistical techniques. Methods of statistical pattern recognition allow to identify images in the captured sequence that are reach for information about observed biotic stress and to find small subsets of fluorescence images suitable for following analysis. I utilized only methods for identification of small sets of images providing high performance with realistic time consumptions.
|
8 |
Micro-Expression Extraction For Lie Detection Using Eulerian Video (Motion and Color) Magnication / Micro-Expression Extraction For Lie Detection Using Eulerian Video (Motion and Color) MagnicationChavali, Gautam Krishna, Bhavaraju, Sai Kumar N V, Adusumilli, Tushal, Puripanda, VenuGopal January 2014 (has links)
Lie-detection has been an evergreen and evolving subject. Polygraph techniques have been the most popular and successful technique till date. The main drawback of the polygraph is that good results cannot be attained without maintaining a physical contact, of the subject under test. In general, this physical contact would induce extra consciousness in the subject. Also, any sort of arousal in the subject triggers false positives while performing the traditional polygraph based tests. With all these drawbacks in the polygraph, also, due to rapid developments in the fields of computer vision and artificial intelligence, with newer and faster algorithms, have compelled mankind to search and adapt to contemporary methods in lie-detection. Observing the facial expressions of emotions in a person without any physical contact and implementing these techniques using artificial intelligence is one such method. The concept of magnifying a micro expression and trying to decipher them is rather premature at this stage but would evolve in future. Magnification using EVM technique has been proposed recently and it is rather new to extract these micro expressions from magnified EVM based on HOG features. Till date, HOG features have been used in conjunction with SVM, and generally for person/pedestrian detection. A newer, simpler and contemporary method of applying EVM with HOG features and Back-propagation Neural Network jointly has been introduced and proposed to extract and decipher the micro-expressions on the face. Micro-expressions go unnoticed due to its involuntary nature, but EVM is used to magnify them and makes them noticeable. Emotions behind the micro-expressions are extracted and recognized using the HOG features \& Back-Propagation Neural Network. One of the important aspects that has to be dealt with human beings is a biased mind. Since, an investigator is also a human and, he too, has to deal with his own assumptions and emotions, a Neural Network is used to give the investigator an unbiased start in identifying the true emotions behind every micro-expression. On the whole, this proposed system is not a lie-detector, but helps in detecting the emotions of the subject under test. By further investigation, a lie can be detected. / This thesis uses a magnification technique to magnify the subtle, faint and spontaneous facial muscle movements or more precisely, micro-expressions. This magnification would help a system in classifying them and estimating the emotion behind them. This technique additionally magnifies the color changes, which could be used to extract the pulse without a physical contact with the subject. The results are presented in a GUI. / Gautam: +46(0)739528573, +91-9701534064 Tushal: +46(0)723219833, +91-9000242241 Venu: +46(0)734780266, +91-9298653191 Sai: +91-9989410111
|
Page generated in 0.1886 seconds