• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 58
  • 30
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dioxins and dioxin-like compounds in thermochemical conversion of biomass : formation, distribution and fingerprints

Gao, Qiuju January 2016 (has links)
In the transition to a sustainable energy supply there is an increasing need to use biomass for replacement of fossil fuel. A key challenge is to utilize biomass conversion technologies in an environmentally sound manner. Important aspects are to minimize potential formation of persistent organic pollutants (POPs) such as dioxins and dioxin-like compounds. This thesis involves studies of formation characteristics of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and naphthalenes (PCNs) in microwave-assisted pyrolysis (MAP) and torrefaction using biomass as feedstock. The research focuses are on their levels, distributions, fingerprints (homologue profiles and isomer patterns) and the underlying formation pathways. The study also included efforts to optimize methods for extracting chlorinated aromatic compounds from thermally treated biomass. The overall objective was to contribute better understanding on the formation of dioxins and dioxin-like compounds in low temperature thermal processes. The main findings include the following: Pressurized liquid extraction (PLE) is applicable for simultaneous extraction of PCDDs, PCDFs, PCNs, polychlorinated phenols and benzenes from thermally treated wood. The choice of solvent for PLE is critical, and the extraction efficiency depends on the degrees of biomass carbonization. In MAP experiments PCDDs, PCDFs and PCNs were predominantly found in pyrolysis oils, while in torrefaction experiments they were mainly retained in solid chars with minor fractions in volatiles. In both cases, highly chlorinated congeners with low volatility tended to retain on particles whereas the less chlorinated congeners tended to volatize into the gas phase. Isomer patterns of PCDDs, PCDFs and PCNs generated in MAP were more selective than those reported in combustion processes. The presence of isomers with low thermodynamic stability suggests that the pathway of POPs formation in MAP may be governed not only by thermodynamic stabilities but also by kinetic factors. Formation of PCDDs, PCDFs and PCNs depends not only on the chlorine contents in biomass but also the presence of metal catalysts and organic/metal-based preservatives. Overall, the results provide information on the formation characteristics of PCDDs, PCDFs and PCNs in MAP and torrefaction. The obtained knowledge is useful regarding management and utilization of thermally treated biomass with minimum environmental impact.
12

Mixed fuels composed of household waste and waste wood : Characterization, combustion behaviour and potential emissions

Edo Giménez, Mar January 2016 (has links)
Incineration with energy recovery is the main disposal strategy for waste that cannot be reused or recycled, and a well-established source of energy in Europe, especially in Sweden where 2.2 Mtonnes of waste including domestic and imported municipal solid waste (MSW) and waste wood (WW) were combusted during 2015. However, owing to its inherent heterogeneous composition, inclusion of such waste in Waste-to-energy (WtE) technologies is challenging. These heterogeneities may lead to operationally-related issues in the WtE facilities and contribute to toxic emissions, which can be reduced by waste pre-treatment technologies.    This thesis examines the variations in the composition of MSW and WW streams used as a fuel supply in WtE facilities after undergoing waste pre-treatment technologies, and the effect of fuel composition on its combustion behaviour and formation of persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The overall objective is to contribute to a more thorough understanding of the selection of waste pre-treatment technologies to mitigate harmful emissions into the atmosphere when waste fuels are combusted in WtE facilities.    This thesis describes the high variability of contaminants in domestic and imported WW and suggests adaptation of WW pre-treatment techniques to produce fuels with a low potential for generating pollutants. A comparison of mechanical solid waste pre-treatments revealed that screening and shredding is more efficient than extrusion for reducing emissions of pollutants such as PCDDs and PCDFs in combustion. The evaluation of the combustion behaviour of MSW-based fuels showed a three-stage oxidative decomposition, and an acceleration of the decomposition of the MSW compared to the lignocellulosic materials, which may be attributed to the presence of food waste and plastics in the MSW. Combustion tests of fuel blends containing WW and MSW-based fuels with different food waste content suggested that WW, not food waste content, is the key factor for the formation of PCDDs, PCDFs, and polychlorinated biphenyls (PCB), benzenes (PCBzs) and phenols (PCPhs). Torrefaction may be a suitable technology for improving the properties of waste as a fuel e.g. due to its low PCDD and PCDF emissions. / Förbränning med energiåtervinning är det huvudsakliga sättet att ta hand om avfall som inte kan återanvändas eller återvinnas. Det är en väletablerad energikälla i Europa och särskilt i Sverige där 2,2 miljoner ton avfall, däribland inhemskt och importerat hushållsavfall och returträ, förbrändes under 2015. På grund av den heterogena sammansättningen hos hushållsavfall och returträ är förbränning av dessa material i anläggningar med energiåtervinning (så kallade WtE-anläggningar) förknippade med en del driftsrelaterade utmaningar. Det kan även ge upphov till miljöfarliga utsläpp, som dock kan reduceras genom förbehandling av avfallet. I denna avhandling har variationer i sammansättningen hos hushållsavfall och returträ som förbränns i WtE-anläggningar undersökts. Effekten av bränslemixens sammansättning och ev förbehandling på bränslets förbränningsegenskaper samt bildning av långlivade organiska föroreningar (så kallade POPar) såsom polyklorerade dibenso-p-dioxiner och polyklorerade dibensofuraner vid förbränning har utvärderats. Det övergripande målet är att bidra till en djupare förståelse av hur valet av förbehandlingsteknik för avfall kan bidra till att minska skadliga utsläpp till luft när avfallsbränslen förbränns i WtE-anläggningar. Denna avhandling beskriver den stora variabiliteten av metall- och materialföroreningar i inhemskt och importerat returträ och föreslår förbehandlingstekniker för att producera bränslen med låg potential att generera föroreningar. En jämförelse av mekaniska förbehandlingstekniker visade att mekanisk sönderdelning och separering (krossning och siktning) är mer effektivt än s.k. högtrycks-pressning för att minska utsläppen av föroreningar som dioxiner och furaner vid förbränning. Utvärderingen av bränslemixar innehållande hushållsavfall uppvisade en oxidativ nedbrytning i tre steg vid förbränning, och en accelererad nedbrytning av avfallsmaterialet jämfört med vedmaterialet i bränslet, troligen som effekt av innehållet av matavfall och plast i hushållsavfallet. Förbränningsförsök med bränsleblandningar av returträ och hushållsavfall med olika innehåll av matavfall visade att mängden returträ, och inte mängden matavfall, är den viktigaste faktorn för bildning av dioxiner, furaner, klorbifenyler, klorbensener, och klorfenoler. Torrefiering kan vara en lämplig teknik för att förbättra avfallets bränsleegenskaper, t.ex. på grund av dess låga emissioner.
13

Formación de contaminantes en dos procesos de interés: combustión de pinos y compostaje de lodos

Muñoz Fernández, María 22 July 2013 (has links)
No description available.
14

Formation and degradation of PCDD/F in waste incineration ashes

Lundin, Lisa January 2007 (has links)
<p>The disposal of combustible wastes by incineration is a controversial issue that is strongly debated by both scientists and environmental activists due to the resulting emissions of noxious compounds, including (<i>inter alia</i>) polychlorinated dibenzo-<i>p</i>-dioxins (PCDDs), dibenzofurans (PCDFs), heavy metals and acid gases like sulfur dioxide. Currently available air pollution control devices are capable of effectively cleaning flue gases, and PCDD/F emissions to air from modern municipal solid waste (MSW) incinerators are low. However, the PCDD and PCDF end up in ash fractions that, in Sweden, are usually deposited in landfills.</p><p>The European Union has recently set a maximum permitted total concentration of 15 µg TEQ/kg for PCDD/F species in waste. Fly ash from municipal solid waste (MSW) incineration containing PCDD/Fs at concentrations above this limit will have to be remediated to avoid disposing of them in landfills; an expensive and environmentally unfriendly option. Therefore, effective, reliable and cost-effective methods for degrading PCDD/F in fly ash are required, and a better understanding of the behavior of PCDDs and PCDFs during thermal treatment will be needed to develop them.</p><p>In the studies this thesis is based upon both the formation and degradation of PCDDs and PCDFs in ashes from MSW incineration were studied.</p><p>The main findings of the investigations regarding PCCD/F formation were:</p><p>- The concentrations of PCDD and PCDF in fly ash increased with reductions in the temperature in the post-combustion zone.</p><p>- The homologue profile in the ash changed when the temperature in the post-combustion zone changed.</p><p>- The final amounts of PCDD and PCDF present were affected by their rates of both formation and degradation, and the mechanisms involved differ between PCDDs and PCDFs.</p><p>The main findings from the degradation studies were:</p><p>- The chemical composition of ash has a major impact on the degradation potential of PCDD and PCDF.</p><p>- The presence of oxygen during thermal treatment can enhance the degradation of PCDD and PCDF.</p><p>- Thermal treatment is a viable option for degrading PCDD and PCDF in ashes from MSW.</p><p>- Shifts in chlorination degree occur during thermal treatment.</p><p>- Rapid heat transfer into the ash is a key factor for ensuring fast degradation of PCDD and PCDF.</p><p>- Degradation of other chlorinated organic compounds, e.g. PCB and HCB, also occurs during thermal treatment of ash.</p><p>- Reductions in levels of PCDD and PCDF were not solely due to their desorption to the gas phase.</p><p>- Differences between the behavior of 2378-substituted congeners of PCDD and PCDF and the other congeners during thermal treatment were observed.</p><p>- Differences in isomer patterns of both PCDD and PCDF were observed between the ash and gas phases after thermal treatment at both 300 and 500 oC.</p><p>Overall, the results show that the formation and degradation mechanisms of PCDDs differ substantially from those of PCDFs. Thus these groups of compounds should be separately considered in attempts to identify ways to reduce their concentrations.</p>
15

An assessment of dioxins, dibenzofurans and PCBs in the sediments of selected freshwater bodies and estuaries in South Africa / R. Pieters

Pieters, Rialet January 2007 (has links)
Thesis (Ph.D. (Zoology))--North-West University, Potchefstroom Campus, 2008.
16

Atmospheric dry/wet deposition of polychlorinated dibenzo-p-dioxins/dibenzofurans in a rural area of Southern Taiwan

Huang, Chun-Jen 18 January 2012 (has links)
The characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and the variation of the gas-particle partitioning of PCDD/Fs near two municipal solid waste incinerators (MSWIs) located in southern Taiwan were investigated. In order to better understand the mechanism of dry deposition, the atmospheric dry deposition flux and velocity of PCDD/Fs were calculated. It was found that the mean atmospheric PCDD/F concentrations (0.0348-0.106 pg I-TEQ/Nm3) were comparable to those detected in the vicinity of MSWIs in Taiwan, but significantly lower than those in a highly industrialized urban area (0.150 pg I-TEQ/Nm3) located in southern Taiwan. The relatively higher atmospheric PCDD/F concentrations was found in winter than in summer. The calculated total dry deposition flux of PCDD/Fs ranged from 0.0274-0.718 ng I-TEQ/m2-month, and the atmospheric deposition flux in winter tended to be higher than those in summer. The results also indicated that dry deposition velocities of atmospheric particles for each month ranged from 0.52-0.91 cm/s (mean = 0.63 cm/s) and 0.48-0.73 cm/s (mean = 0.55 cm/s) in sites A and B, respectively, which were similar to that for the ambient air near two MSWIs in Taiwan, but slightly higher than those in urban area of Korea. In addition, the dry deposition of PCDD/Fs was mainly contributed by particle-phase at both sampling areas during the estimated period. The above results demonstrated that the dominant mechanism of dry deposition was particle phase deposition. The annual variations of wet deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in atmosphere were also measured at two sites (A and B). Results showed that particle scavenging dominates in the wet deposition processes for the removal of PCDD/Fs from the atmosphere, the highest value was observed at the highest chlorinated congener. The ambient temperature and the amount of precipitation played an important role in the variation of PCDD/F deposition fluxes. It was found that temperature was inversely associated with the existence of particulate PCDD/Fs, indicating PCDD/Fs are scavenged most efficiently in cold weather. PCDD/F wet deposition fluxes in rainy seasons (from June to August) were significantly higher than those in dry seasons (from December to February), revealing a positive relationship between wet deposition flux and monthly rainfall. Additionally, the annual total (dry + wet) deposition fluxes of PCDD/Fs were 149 ng/m2-year (5.02 ng I-TEQ/m2-year) and 177 ng/m2-year (5.11 ng I-TEQ/m2-year) for sites A and B, respectively, revealing that dry deposition was more dominant than the wet deposition for the atmospheric deposition of PCDD/Fs. Since atmospheric deposition is believed to be the main transfer pathway of PCDD/Fs into food chains, its impact on human exposure to PCDD/Fs is of great importance.
17

The Study of PCDD/Fs Emitted from Flue Stacks and Open Burnings in Southern Taiwan

Kao, Jen-Ho 17 June 2007 (has links)
This work investigated the characteristics of polychlorinated dibenzo-p-dioxins anddibenzofurans (PCDD/F) in stack-flue gases from six stationary emission sources in five types ofincinerators: industrial waste incinerator (IWI), small-scale municipal solid waste incinerator(MSWI), medical waste incinerator (MWI), cement kilns (CK), and crematories (CR). These characteristics were further investigated using factor analysis and cluster analysis. Experimental results reveal that PCDDs dominate MSWI and CR, and PCDFs dominate IWIa, IWIb, CK and MWIs. The factor analysis results showed that CR and MSWI have similar fingerprints, as do IWIb and MWI3. The cluster analysis showed that if a vertical line is cut at a rescaled distance of four, then the PCDD/F congener profiles fall into four groups. The indicators of PCDD/Fs are OCDD, 1,2,3,4,6,7,8-HpCDF, 2,3,4,7,8-PeCDF, and 1,2,3,4,6,7,8-HpCDD. The emission factors of PCDD/Fs herein were from 0.0433
18

Characteristics of PCDD/ Fs and metal contents in ash from different units in a municipal solid waste incinerator

Lin, Yu-Sheng 13 May 2008 (has links)
This study determined the polychlorinated dibenzo-p-dioxins/ dibenzo- furans (PCDD/Fs) and 22 metals contents in ash in the super heater (SH), economizer (EC), semi-dryer absorber (SDA), fabric filter (FF), fly ash pit (FAP) and bottom residue (BR) in a municipal solid waste incinerator (KTMSWI). Experimental results showed that average PCDD/FS contents in ash samples from the SH, EC, SDA, FF, FAP and BR were 0.102, 0.788, 0.210, 1.95, 2.04 and 0.0218 ng I-TEQ /g, respectively. PCDD/Fs content was very low in the SH and BR due to high temperatures (around 461¢XC in the SH and 914¢XC in combustion chamber). Conversely, total PCDD/Fs content was significantly high in ash samples from the EC (around 340¢XC), mainly because the temperature is within the favorable range of 250-400¢XC for PCDD/FS formation due to de nova reformation mechanisms. Although the SDA operated at 245¢XC, the PCDD/FS content decreased very significantly, mainly because the temperature was relatively low and because calcium carbonate was introduced into flue gases to dechlorinate and dilute chlorine-containing species. PCDD/Fs were captured by the active carbon in the FF. Furthermore, the duration that fly ash remained in the FF was longer than that for other incinerator units, and thus causing an increasing trend of PCDD/Fs level downstream (except the SDA). Total PCDD/Fs emission factors (£gg /ton-waste; £gg I-TEQ /ton-waste) in ash samples from different units were: SH (42.3; 0.846), EC (326; 6.12 ), SDA (58.1; 1.10), FF (1540; 61.3), FAP (2950; 107) and BR (537; 4.31). Most PCDD/Fs in ash were contributed by the FF (about 56%), and the generation of PCDD/Fs in ash was significant (about 35%) during the transfer process from different units to the FAP. A strong and positive correlation in a logarithmic form existed between PCDD/Fs and chlorine (Cl-) contents in ash. The results showed that principal metals in the incinerator ash were Al, Fe, Zn, Ba, Pb and Cu. On average, these six metals accounted for 96.6%, 96.8%, 97.0%, 94.2% and 96.7% of the total metals in SH, EC, SDA, FF and BR ash, respectively. The emission factors of individual metals from different units were obtained. Volatile metals, such as Cd, Sn, Sb, Hg and Pb, were mostly in fly ash, while lithophilic metals, such as Al, Fe, Ti, V, Cu, Mn, Fe, Co, Ni, Cu, Sr, Mo, Ag, Ba and Cr+6 were mainly in bottom ash. Distribution ratios for total metals in SH, EC, SDA, FF and BR ash were 4.87%, 4.26%, 2.89%, 8.17% and 79.81%, respectively. That is, about 20.2% of total metals were in fly ash and most metals (about 79.8%) were in bottom ash. The Pb content in EC ash and Hg content in FF ash were between alarm contents and maximum legal limits, while Cd and Pb contents in FF ash exceeded the maximum legal limits. The existing transportation system for transferring fly ash from different units to a fly ash pit should be modified for recycling the valuable metals. Ash with less than the alarm content for metals content, such as ash from the SH, SDA and BR, can be reused. Ash with metals exceeding the alarm contents, such as ash from the EC and FF, should be collected and transferred to a different fly ash pit for further treatment, such as metal recycling.
19

Formation and degradation of PCDD/F in waste incineration ashes

Lundin, Lisa January 2007 (has links)
The disposal of combustible wastes by incineration is a controversial issue that is strongly debated by both scientists and environmental activists due to the resulting emissions of noxious compounds, including (inter alia) polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), heavy metals and acid gases like sulfur dioxide. Currently available air pollution control devices are capable of effectively cleaning flue gases, and PCDD/F emissions to air from modern municipal solid waste (MSW) incinerators are low. However, the PCDD and PCDF end up in ash fractions that, in Sweden, are usually deposited in landfills. The European Union has recently set a maximum permitted total concentration of 15 µg TEQ/kg for PCDD/F species in waste. Fly ash from municipal solid waste (MSW) incineration containing PCDD/Fs at concentrations above this limit will have to be remediated to avoid disposing of them in landfills; an expensive and environmentally unfriendly option. Therefore, effective, reliable and cost-effective methods for degrading PCDD/F in fly ash are required, and a better understanding of the behavior of PCDDs and PCDFs during thermal treatment will be needed to develop them. In the studies this thesis is based upon both the formation and degradation of PCDDs and PCDFs in ashes from MSW incineration were studied. The main findings of the investigations regarding PCCD/F formation were: - The concentrations of PCDD and PCDF in fly ash increased with reductions in the temperature in the post-combustion zone. - The homologue profile in the ash changed when the temperature in the post-combustion zone changed. - The final amounts of PCDD and PCDF present were affected by their rates of both formation and degradation, and the mechanisms involved differ between PCDDs and PCDFs. The main findings from the degradation studies were: - The chemical composition of ash has a major impact on the degradation potential of PCDD and PCDF. - The presence of oxygen during thermal treatment can enhance the degradation of PCDD and PCDF. - Thermal treatment is a viable option for degrading PCDD and PCDF in ashes from MSW. - Shifts in chlorination degree occur during thermal treatment. - Rapid heat transfer into the ash is a key factor for ensuring fast degradation of PCDD and PCDF. - Degradation of other chlorinated organic compounds, e.g. PCB and HCB, also occurs during thermal treatment of ash. - Reductions in levels of PCDD and PCDF were not solely due to their desorption to the gas phase. - Differences between the behavior of 2378-substituted congeners of PCDD and PCDF and the other congeners during thermal treatment were observed. - Differences in isomer patterns of both PCDD and PCDF were observed between the ash and gas phases after thermal treatment at both 300 and 500 oC. Overall, the results show that the formation and degradation mechanisms of PCDDs differ substantially from those of PCDFs. Thus these groups of compounds should be separately considered in attempts to identify ways to reduce their concentrations.
20

Persistent organic pollutants (POPs) in soil associated with an active incinerator in Potchefstroom, South Africa / L.P. Quinn

Quinn, Laura Penelope January 2005 (has links)
POPs are a group of chemicals that have been extensively studied over the last few years. The main reason that these chemicals have received so much scientific attention is the myriad of negative effects they have on the environment and human health. The properties that cause the deleterious effects include a high molecular stability, rendering them highly persistent. Added to this is the lipophilic and hydrophobic nature of the compounds. POPs will thus tend to bio-accumulate and bio-magnify in the environment, causing a direct threat to humans and wildlife. To address this threat, the Stockholm Convention on Persistent Organic Pollutants, under the supervision of United Nations Environment programme (UNEP), was initiated and became legally binding on 17 May 2004. All countries, including South Africa, which ratified this agreement, will be expected to monitor and regulate the formation of POPs. Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) are all members of the dioxin-like family of POPs. This family of chemicals pose serious health threats such as carcinogenic effects and negative effects on reproduction. These substances, with the exception of PCBs, are formed unintentionally as by-products of industrial and thermal processes. One of the main sources of dioxin-like chemicals is medical waste incinerators. In this project the area surrounding a medical waste incinerator was monitored using a bio-assay technique. The determination of dioxin concentrations is usually preformed by chemical analysis, however, bio-assays have proven themselves to be a cheaper and time-saving screening method. The Toxic Equivalency Quotient (TEQs) determined through bio-assays can support chemical analysis in determining biologically-relevant risk assessments since bio-assay data has ecotoxicological relevance. These assays represent an integrated biological response to chemical pollutants, where biological effects are accounted for which is not possible in chemical analyses. One of the bio-assays used in the determination of the dioxin-like chemical TEQ is the H411 E reporter gene bio-assay. This assay is based on the Ah-receptor mediated toxicity of dioxin-like chemicals. Using this technique the TEQs for areas surrounding an active incinerator were determined, to indicate the distribution of these substances. The TEQs for the soil samples collected ranged between nondetectable and 154 ngTEQ/kg. There was no clear distributional pattern and the total organic carbon content in the soil did not seem to play a crucial role in the distribution of dioxin-like chemicals. Although a decrease in soil tillage showed a corresponding increase in TEQ. The predominant wind direction was taken into account but no correlation could be seen. However, meteorological parameters such as the ambient temperature and low precipitation in the area may have contributed to lower TEQ values. Cytotoxicity excluded data points and the phenomenon has to be addressed. High TEQ values in a residential area where free-range chickens are raised pose a serious concern to the level of dietary dioxin-like chemical intake. Eggs in the area could theoretically contain between 2.75 and 28.75 pgTEQ/g egg fat. Further studies are needed to determine how much dioxin-like chemicals are being transferred to humans through the consumption of free-range eggs / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2006.

Page generated in 0.0421 seconds