• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 83
  • 55
  • 33
  • 15
  • 11
  • 11
  • 10
  • 8
  • 7
  • 6
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 555
  • 86
  • 56
  • 53
  • 49
  • 38
  • 38
  • 37
  • 32
  • 32
  • 31
  • 31
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Electrodeposition of ultrathin Pd, Co and Bi films on well-defined noble-metal electrodes: studies by ultrahigh vacuum-electrochemistry (UHV-EC)

Baricuatro, Jack Hess L 30 October 2006 (has links)
Three illustrative cases involving the electrodeposition of ultrathin metal films of varying reactivities onto noble-metal substrates were investigated: (i) Pd on Pt(111), a noble admetal on a noble-metal surface; (ii) Bi on Pd(111), a less noble admetal on a noble-metal surface; and (iii) Co on polycrystalline Pd and Pd(111), a reactive metal on a noble-metal surface. The interfacial electrochemistry of these prototypical systems was characterized using a combination of electrochemical methods (voltammetry and coulometry) and ultrahigh vacuum electron spectroscopies (Auger electron spectroscopy, AES; low energy electron diffraction, LEED; and X-ray photoelectron spectroscopy, XPS). Potential-controlled adsorption-desorption cycles of aqueous bromide exerted surface smoothening effects on ultrathin Pd films with defect sites (steps). This procedure, dubbed as electrochemical (EC) annealing, constituted a nonthermal analogue to conventional annealing. EC-annealed ultrathin Pd films exhibited long-range surface order and remained free of oxygen adspecies. Pdadatoms occupying step-sites were selectively dissolved and/or rearranged to assume equilibrium positions in a well-ordered (1x1) film. Electrodeposition of Co was found to be highly surface-structuresensitive. While virtually no Co electrodeposition transpired on a clean Pd(111) surface, Co was voltammetrically deposited on (i) a Pd(111) electrode roughened by oxidation-reduction cycles; and (ii) thermally annealed polycrystalline Pd, which is a composite of the (111) and (100) facets. Electrodeposition of Co was also observed to be kinetically hindered and slow potential scan rates (0.1 mV/s) were required. Well-defined ultrathin Bi films were potentiostatically electrodeposited onto Pd(111); a Stranski-Krastanov growth mode was indicated. The electrochemical reactivity of ultrathin Bi films was characterized using two surface probes: aqueous iodide and D-glucose. (i) Exposure of the prepared Bi adlayers (ΘBi 0.33) to aqueous iodide gave rise to (√3x√7) I-on-Bi superlattice. The same superlattice was obtained if Bi was electrodeposited onto Pd(111)(√3x√3)R30o-I. (ii) With respect to electrooxidation of D-glucose on Pd(111), the presence of Bi adlayers inhibited the by-product-induced "surface poisoning" of Pd(111) but reduced its electrocatalytic efficiency.
222

Surface spectroscopic studies of mono- and bimetallic model catalysts

Yi, Cheol-Woo 25 April 2007 (has links)
This dissertation is focused on understanding heterogeneous bimetallic catalysts using model catalyst systems, such as Pd-Au/Mo(110), Pd/Au(111) and Pd/Au(100). Monometallic and bimetallic model catalysts, composed of Pd and Au, were prepared by physical vapor deposition (PVD) onto well-characterized metal substrates. Subsequent characterization was performed using an arsenal of modern surface science tools: low energy ion scattering spectroscopy (LEISS), infrared absorption spectroscopy (IRAS), temperature programmed desorption (TPD), and x-ray photoelectron spectroscopy (XPS). Electronic, morphological, and chemical properties of the prepared model catalysts were compared to those observed from monometallic single-crystal model catalysts such as Cu(100), Pd(111), Au(100), and Au(111). Between 700 K and 1000 K, formation of stable alloy surfaces of Pd-Au mixtures on Mo(110) was accompanied by substantial enrichment in Au. Annealing a 1:1 Pd-Au mixture at 800 K yields a Pd0.2Au0.8 surface alloy; the concentration of isolated Pd sites in this surface alloy can be systematically controlled by a judicious selection of initial bulk Pd-Au concentration. Pd-Au catalysts supported on Au(111) and Au(100) substrates generated a surface ensemble of Pd monomers surrounded by Au after annealing the systems at or above 550 K. To test the activity and selectivity of the prepared bimetallic model catalysts, the formation rate of vinyl acetate monomer (VAM) was examined. More significant enhancement of VAM formation rate was observed for bimetallic catalysts supported on Au(100) compared to those on Au(111). A critical surface ensemble composed two non-contiguous Pd monomers was proposed for the VAM synthesis. Oxygen plays a critical role in the efficiency of the synthetic route. Structure-reactivity correlations were established based on the suggested elementary reactions leading to the oxidative coupling of ethylene and acetic acid to form VAM.
223

First-principles approach to screening multi-component metal alloys for hydrogen purification membranes

Semidey Flecha, Lymarie 28 October 2009 (has links)
Metal membranes play a vital role in hydrogen purification. Defect-free membranes can exhibit effectively infinite selectivity for hydrogen. Membranes must meet multiple objectives, including providing high fluxes, resistance to poisoning, long operational standards, and be cost effective. Alloys offer an alternate route in improving upon membranes based on pure metal such as Pd. Development of new membranes is hampered by the large effort and time required not only to experimentally develop these membranes but also to properly test these materials. We show how first principle calculations combined with coarse-grained modeling can accurately predict H2 fluxes through binary and ternary alloy membranes as a function of alloy composition, temperature and hydrogen pressures. Our methods require no experimental input apart from the knowledge of the bulk crystal structure. Our approach is demonstrated for pure Pd, Pd-rich binary alloys, PdCu binary alloys, and PdCu-based ternary alloys. PdCu alloys have experimentally shown to have potential for resistance to sulfur poisoning. First, we used plane wave Density Functional Theory to study the binding and local motion of hydrogen for the alloys of interest. This data was used in combination with a Cluster Expansion Method along with the Leave-One-Out analysis to generate comprehensive models to predict hydrogen behavior in the interstitial binding sites within the bulk of the alloys of interest. These models not only were required to correctly fit our calculated data, but they were also required to properly predict behaviors for local conditions for which we had not collected information. These models were then used to predict hydrogen solubility and diffusivity at elevated temperatures. Although we are capable of combining first principle theory calculations with coarse grain modeling, we have explored a pre-screening method in order to determine which a particular material are worth performing additional calculations. Our heuristic lattice model is a simplified model involving as few factors as possible. It is by no means intended to predict the exact macroscopic H properties in the bulk of fcc materials, but it is intended as a guide in determining which materials merit additional characterization.
224

First-principles study of palladium-based metal alloys as hydrogen purification membranes

Ling, Chen 10 November 2009 (has links)
Hydrogen is a good candidate as a future energy source. Current technologies generate hydrogen from hydrocarbons as mixtures with other species like CO and CO₂. High flux and resistance to contaminants are required for membranes used to separate hydrogen from these mixtures, as well as other requirements such as long operation standard and low cost. Development of new membranes is hampered by the large effort and time required to experimentally develop and test these membranes. I show how first-principles Density Functional Theory (DFT) calculations combined with coarse-grained modeling can be used to predict the performance of metal alloys as H₂ purification membranes. I introduce quantitative modeling methods based on DFT calculations that assess the relative role of surface resistances for metal alloy membranes, the bulk permeation rate through alloy membranes, and the selectivity of metal membranes. In my study, I first examined the importance of surface processes for thin membranes. The possibility of using new materials such as PdCuAg ternary alloys and metal sulfides as hydrogen purification membranes were examined. Finally I predicted the absorption and diffusion of another atomic species, carbon, in the membranes. My methods require no experimental input apart from the knowledge of the bulk crystal structure, so they provide an alternate way to explore new materials as hydrogen purification membranes. My results will be a useful guide for future experimental studies.
225

Reconstructions et réactivité catalytique induites par contrainte : une étude quantique des dépôts de Pd sur Ni(110).

Filhol, Jean-Sébastien 20 July 2001 (has links) (PDF)
Dans cette thèse, nous tenterons d'apporter une dénition plus précise de la contrainte de surface au niveau atomique et nous l'appliquerons au cas d'une monocouche épitaxique de Pd/Ni(110) (la surface (110) est présentée dans la gure 1.1.<br />Nous montrerons que cette contrainte peut induire des reconstructions importantes de surface. A partir de là nous construirons le diagramme de rons qu'un certain nombre de paramètres entre en compétition et induit ce diagramme. Nous verrons que l'épitaxie sur substrat Ni peut maintenir la surface de Pd dans une phase normalement instable pour les hauts taux de recouvrement. Nous verrons qu'un simple jeu sur les paramètres d'épitaxie du système suffit à induire un transition de phase. Nous montrerons que ces surfaces possèdent des propriétés électroniques qui peuvent varier fortement laissant penser qu'elles possèdent toute une gamme de réactivité.<br />Nous étudierons les mécanismes d'adsorption d'une molécule test, l'éthylène, sur la surface de référence du Pd(110). Nous montrerons que même la simple détermination des sites d'adsorption de l'éthylène sur celle-ci peut réserver quelques surprises. Ensuite nous porterons notre attention sur la réaction d'hydrogénation de l'éthylène sur cette surface et nous en déduirons quelques chemins réactionnels.<br />Le coeur de l'étude vient à la n de cette thèse. Il s'agit de représenter la réaction de l'éthylène sur les dépôts épais (4 monocouches) de Pd/Ni(110). Nous déterminerons une surface modèle qui représente de manière satisfaisante les surfaces réelles. Nous trouverons ensuite les états d'adsorption de l'éthylène, puis ceux de co-adsorption avec de l'hydrogène (dans la limite des faibles taux de couverture). Et, nous trouverons les chemins d'hydrogénation de l'éthylène. Enn, nous comparerons ces chemins à ceux obtenus pour les surfaces Pd(110) et nous tenterons de comprendre ce qui permet l'amélioration de la cinétique d'hydrogénation sur ces surfaces.phases partiel des surfaces Pd/Ni(110).
226

Simulation tools for predicting the atomic configuration of bimetallic catalytic surfaces

Stephens, John Adam 14 November 2013 (has links)
Transition metal alloys are an important class of materials in heterogeneous catalysis due in no small part to the often greatly enhanced activity and selectivity they exhibit compared to their monometallic constituents. A host of experimental and theoretical studies have demonstrated that, in many cases, these synergistic effects can be attributed to atomic-scale features of the catalyst surface. Realizing the goal of designing -- rather than serendipitously discovering -- new alloy catalysts thus depends on our ability to predict their atomic configuration under technologically relevant conditions. This dissertation presents original research into the development and use of computational tools to accomplish this objective. These tools are all based on a similar strategy: For each of the alloy systems examined, cluster expansion (CE) Hamiltonians were constructed from the results of density functional theory (DFT) calculations, and then used in Metropolis Monte Carlo (MC) simulations to predict properties of interest. Following a detailed description of the DFT+CE+MC simulation scheme, results for the AuPd/Pd(111) and AuPt/Pt(111) surface alloys are presented. These two systems exhibit considerably different trends in their atomic arrangement, which are explicable in terms of their interatomic interactions. In AuPd, a preference for heteronuclear, Au-Pd interactions results in the preferential formation of Pd monomers and other small ensembles, while in AuPt, a preference for homonuclear interactions results in the opposite. AuPd/Pd(100) and AuPt/Pt(100) were similarly examined, revealing not only the effects of the same heteronuclear/homonuclear preferences in this facet, but also a propensity for the formation of second nearest-neighbor pairs of Pd monomers, in close agreement with experiment. Subsequent simulations of the AuPd/Pd(100) surface suggest the application of biaxial compressive strain as a means increasing the population of this catalytically important ensemble of atoms. A method to incorporate the effects of subsurface atomic configuration is also presented, using AuPd as an example. This method represents several improvements over others previously reported in the literature, especially in terms of its simplicity. Finally, we introduce the dimensionless scaled pair interaction, whereby the finite-temperature atomic configuration of any bimetallic surface alloy may be predicted from a small number of relatively inexpensive calculations. / text
227

LUMINESCENT TRANSITION METAL COMPLEXES OF 2-(2’-PYRIDYL)BENZIMIDAZOLYL AND 2-(2’-PYRIDYL)INDOLYL BASED LIGANDS AND THEIR APPLICATIONS

McCormick, Theresa 27 September 2008 (has links)
The objective of this thesis is to examine the photophysical and structural properties of Cu(I) complexes of 2-(2’-pyridyl)benzimidazolyl based ligands and Cu(I), Pd(II) and Pt(II) complexes of 2-(2’-pyridyl)indolyl based ligands, for possible use as phosphorescent emitters in OLEDs. The discovery of the atropisomeric 3,3’-bis(2-(2’-pyridyl)indolyl based ligands led to the examination of C-C coupling reactions and the investigation of the new chiral ligands with transition metal ions. Cu(I) complexes of 2-(2’pyridyl)benzimidazolyl-benzene with varying phosphine ligands were prepared. The structures were studied with X-ray crystallography and NMR. Experimental and computational results established that steric and electronic properties of the phosphine ligands influence the photophysical properties of the Cu(I) complexes. Polynuclear Cu(I) complexes with 2-(2’-pyridyl)benzimidazolyl based ligands and two PPh3 ancillary ligands were synthesized, the photoluminescent and electroluminescent properties were examined. A series of 2-(2’-pyridyl)indolyl based ligands; 2-(2’-pyridyl)indolyl-benzene (pib), 1,4-bis[2-(2’-pyridyl)indolyl]benzene (bib) and 1,3,5-tris[2-(2’-pyridyl)indolyl]benzene) (tib) and the corresponding C-C coupled dimers bis[3,3’(2-(2’-pyridyl)indolyl-benzene)] (bpib), bis[3,3’(1,4-bis[2-(2’-pyridyl)indolyl]benzene (bbib) and bis[3,3’(1,3,5-tris[2-(2’-pyridyl)indolyl]benzene)] (btib) were synthesized in a one-pot reaction with the formation of both C-N and C-C bonds. The photophysical properties of these new molecules were investigated. The dimers display intramolecular exciplex formation. The rotation barrier around the C-C bond in the 3 position of the bis-indole was calculated using DFT which support that bpib is an atropisomeric ligand. Cu(I), Pd(II) and Pt(II) complexes were synthesized with pib and bpib. [Cu(pib)(PPh3)2]+ contains a three-coordinate Cu(I) ion and doesn’t display MLCT but rather 3π-1π phosphorescence. In Pd(pib)(acac) and Pt(pib)(DMSO)Cl the pib ligand forms C,N chelated neutral complexes that display red emission in frozen solution and in solid state. The X-ray crystal structure for [Cu(bpib)2]+ revealed a homo-chiral crystal and for Pd(bpib)Cl2 and Pt(bpib)Cl¬2 show a trans-chelating geometry around the metal centre. Frozen solutions of [Cu(bpib)2]+ and Pd(bpib)Cl2 display MCLT phosphorescence. Finally the atropisomeric ligands bpib and bbib were examined as sensors to determine the enantiomeric excess of Zn(2-bromo-3-methylbutyrate)2 by CD spectroscopy. CD and fluorescent titration experiments verified that these ligands have selective interactions with different Zn(II) carboxylates. DFT computations showed that diastereomeric excess caused by chiral discrimination leads to the CD spectral-response of the atropisomeric ligands toward chiral Zn(II) carboxylates. / Thesis (Ph.D, Chemistry) -- Queen's University, 2008-09-25 09:54:21.464
228

An Investigation of a Pt-Pd Diesel Oxidation Catalyst

Khosravi Hafshejani, Milad Unknown Date
No description available.
229

MEMBRANE IMMOBILIZED REACTIVE Fe/Pd NANOPARTICLES: MODELING AND TCE DEGRADATION RESULTS

He, Ruo 01 January 2012 (has links)
Detoxification of chlorinated organic compound is an important and urgent issue in water remediation nowadays. Trichloroethylene (TCE), as a model compound in this study, has been proved to be degraded effectively by bimetallic nanoparticles (NPs) in solution phase. In this study, Fe/Pd bimetallic NPs were synthesized in poly (acrylic acid) (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes. TCE dechlorination with these bimetallic NPs was conducted under different pH values and different metal loadings to study the role of corrosion on reaction rates. One-dimensional mathematical model with pseudo first-order reaction kinetic was introduced to discuss the TCE dechlorination profile in membrane system. Reduction reaction in pores is affected by several parameters including NP loading and size, TCE diffusivity, void volume fraction and surface-area-based reaction rates. This model result indicated that modification is needed to correct the reaction rate obtained from bulk solution in order to represent the actual efficiency of NPs on reduction reaction. In addition, TCE dechlorination mainly occurred near NPs’ surface. Second part of model indicated that reduction mechanism with TCE adsorption-desorption behavior could be used to discuss dechlorination with a high TCE concentration.
230

Comparison between two procedures of interproximal cleaning in periodontitis patients: a six month, single blind, randomized controlled clinical trial / Vergleich zwischen zwei Vorgehensweisen der Approximalraumreinigung bei Parodontitispatienten: eine randomisierte, klinisch kontrollierte, einfach verblindete 6- Monatsstudie

Schmidt, Bastian 06 November 2014 (has links) (PDF)
Purpose: Periodontitis generally initiates in the interdental area, where biofilm development is difficult to interrupt. Mechanical cleaning with interdental brushes (IDB) offers an effective method for plaque control and prevents gingivitis and periodontitis. This study aimed to determine whether mechanical cleaning with interdental brushes combined with the use of cetylpyridinium chloride (0.3% CPC) gel was more effective at plaque control compared with mechanical cleaning with interdental brushes alone. Materials and Methods: Forty individuals (30 - 70 years) with at least 20 teeth and moderate chronic periodontitis who had no experience with interdental cleaning aids were randomly assigned to a treatment group (brush + gel, n = 20) or a control group (brush, n = 20). Both groups were examined by a dentist at baseline and at 3 and 6 months for changes in interdental plaque [interproximal plaque index (API)] levels, gingival inflammation [sulcus bleeding index (SBI)], probing depth (PD), and bleeding on probing (BOP). Results: No baseline differences in age, gender, or number of teeth were observed between the two groups. During the study period, improvements in API and BOP were comparable between groups. However, improvements in SBI and PD were significantly greater in the test group than in the control group (P = 0.046 and P = 0.029, respectively). Conclusion: Mechanical interdental plaque control with interdental brushes combined with the use of CPC gel significantly improved 6-month gingival and periodontal outcomes (SBI and PD) compared with mechanical cleaning with interdental brushes alone.

Page generated in 0.0513 seconds