1 |
Comparison of External Kinetic and Kinematic Variables between High Barbell Back Squats and Low Barbell Back Squats across a Range of LoadsGoodin, Jacob 01 August 2015 (has links)
This study compared peak force, peak power, peak velocity, impulse, work, and vertical displacement between the high bar back squat (HBBS) and low bar back squat (LBBS). Six trained males performed each using 20, 30, 40, 50, 60, 70, 80, and 90% of their recent training 1 repetition maximum. Dual force plates recorded force-time curve characteristics of ground reaction forces and four potentiometers tracked vertical and horizontal barbell displacement. Repeated–measures analysis of variance revealed a significant main effect for load (p<0.01) across all variables, but no significant effects for condition or interaction. The HBBS generated higher peak force in loads 20%–80%, higher peak power in loads 20%–60% and 80%–90%, higher peak velocity at every load, and greater vertical displacement at every load. The LBBS generated a larger impulse at loads 30%-90% and the HBBS generated more work at loads 20%, 40%, and 60%–90%.
|
2 |
The Influence of Load and Inter-Repetition Rest on Force, Power, and Velocity in Multiple Sets of Hang Power CleansSwisher, Anna 01 August 2016 (has links)
The purpose of this dissertation was to determine the effects of several loads and multiple inter-repetition rest (IRR) intervals on peak power, peak velocity, and peak force in multiple sets of hang power cleans. Additionally, this dissertation investigates the load at which power and barbell velocity are maximized in a hang power clean, which is an area of the literature that requires greater clarity. From a practical perspective it is exceedingly difficult to make training recommendations to maximize power development or prescribe load and IRR intervals in cluster loading based on the current literature. The primary findings of this dissertation are 1) 70% 1RM maximizes power and velocity as compared to 80% 1RM in multiple sets of the hang power clean, 2) 45 seconds IRR improved peak velocity and peak power relative to a traditional set configuration, and 3) peak power output at 80% 1RM with 45 seconds IRR is equivalent to power output at 70% 1RM using a traditional set configuration. To the authors’ knowledge this is only the second study to examine the effect of IRR on multiple sets of power cleans in trained participants, and the insights from this dissertation help to build a foundation for future investigations in cluster loading with weightlifting movements. The findings from this dissertation provide further evidence for the efficacy of cluster loading as a training tool to develop power in trained individuals.
|
3 |
The Effect of Coaching on Two-Handed Catching: Looking at Developmental Differences and Time from Initial Movement to Peak Hand Velocity in College Aged FemalesSmith, Rachel K. January 2009 (has links)
No description available.
|
4 |
Statická a dynamická analýzy ocelové konstrukce / Static and dynamic analysis of steel structureUherek, Jan January 2020 (has links)
The thesis deals with a description and a static and dynamic analysis for an existing construction of lookout tower. The steel watchtower is located in Město Albrechtice and is made up of two lattice towers connected by a bridge. Main point was to create calculation models for the purpose of dynamic and static analysis, in the software SCIA Engineer 19.1, which is based on the principle of finite element method. Attention was paid to load created by winds according to Eurocode 1 and Eurocode 3, glaze and rime ice load and dynamic coefficient calculation. The thesis also includes an assesment of selected parts of the construction according to Eurocodes.
|
Page generated in 0.0713 seconds