Spelling suggestions: "subject:"peak"" "subject:"pea""
181 |
Ecological impacts of deforestation and forest degradation in the peat swamp forests of northwestern BorneoNguyen, Ha Thanh 12 January 2018 (has links)
Tropical peatlands have some of the highest carbon densities of any ecosystem and are under enormous development pressure. This dissertation aimed to provide better estimates of the scales and trends of ecological impacts from tropical peatland deforestation and degradation across more than 7,000 hectares of both intact and disturbed peatlands in northwestern Borneo. We combined direct field sampling and airborne Light Detection And Ranging (LiDAR) data to empirically quantify forest structures and aboveground live biomass across a largely intact tropical peat dome. The observed biomass density of 217.7 ± 28.3 Mg C hectare-1 was very high, exceeding many other tropical rainforests. The canopy trees were ~65m in height, comprising 81% of the aboveground biomass. Stem density was observed to increase across the 4m elevational gradient from the dome margin to interior with decreasing stem height, crown area and crown roughness. We also developed and implemented a multi-temporal, Landsat resolution change detection algorithm for identify disturbance events and assessing forest trends in aseasonal tropical peatlands. The final map product achieved more than 92% user’s and producer’s accuracy, revealing that after more than 25 years of management and disturbances, only 40% of the area was intact forest. Using a chronosequence approach, with a space for time substitution, we then examined the temporal dynamics of peatlands and their recovery from disturbance. We observed widespread arrested succession in previously logged peatlands consistent with hydrological limits on regeneration and degraded peat quality following canopy removal. We showed that clear-cutting, selective logging and drainage could lead to different modes of regeneration and found that statistics of the Enhanced Vegetation Index and LiDAR height metrics could serve as indicators of harvesting intensity, impacts, and regeneration stage. Long-term, continuous monitoring of the hydrology and ecology of peatland can provide key insights regarding best management practices, restoration, and conservation priorities for this unique and rapidly disappearing ecosystem.
|
182 |
Chemical characterization of biomass burning and sea spray aerosolJayarathne, Thilina 01 May 2017 (has links)
Particulate matter (PM) suspended in air varies in size from nanometers to micrometers and contains a wide range of chemical components, including organic compounds, black carbon (soot), inorganic minerals and metals. Atmospheric aerosols are generated from either primary sources like volcanic eruptions, re-suspended soil dust, sea spray, vegetative detritus, fossil fuel and biomass combustion emissions; or secondary atmospheric reactions via gas-to-particle conversion of atmospheric gases. Particle size, abundance, and chemical composition determine how a particle interacts with light and other atmospheric constituents (e.g. gases, water vapor) in addition to its impact on human health. While atmospheric scientists have been working on characterizing atmospheric aerosols for many years, major gaps persist in understanding the properties of many globally-important sources. This dissertation provides new understanding of the chemical composition of biomass burning and sea spray aerosols.
PM emissions from biomass burning vary by fuel, and depend on fuel type and composition, moisture content, and combustion conditions. Although biomass smoke is critically important in global climate and local-regional health impacts, the physical and chemical composition of biomass burning aerosol is still not fully understood in the case of peat, agricultural residues and cooking fires. The Fire Laboratory at Missoula Experiments (FLAME) were designed to fulfill these gaps to improve our understanding in both historically undersampled and well-studied fuels while adding new instrumentation and experimental methods to provide previously unavailable information on chemical properties of biomass burning emissions. Globally-important biomass fuels were combusted in a controlled environment, and PM was chemically characterized to compute fuel based emission factors (EF) as the amount of chemical species released per unit mass of fuel burned. We showed that chemical composition of PM varies for different fuel types and certain fuels types (e.g., peat and ocote) emit considerably high concentrations of polycyclic aromatic compounds that are associated with negative health effects. We also showed that PM from biomass smoke contains fluoride for the first time, at approximately 0.1% by weight. With respect to the annual global emissions of PM due to biomass burning, this makes biomass burning an important source of fluoride to the atmosphere. Further, peatland fire emissions are one of the most understudied atmospheric aerosol sources but are a major source of greenhouse gases globally and cause severe air quality problems in Asia. This thesis provides the first field-based emissions characterization study, for samples collected at peat burning sites in Central Kalimantan, Indonesia. Using these EFs and estimates of the mass of fuel burned, it was estimated that 3.2 - 11 Tg of PM2.5 were emitted to atmosphere during 2015 El Niño peat fire episode which is ~10 % of estimated total annual PM flux for biomass burning. Overall, these studies computed more representative EFs for previously undersampled sources like peat, and previously unidentified chemical species like fluoride that can be used to update regional and global emission inventories.
The concentration and composition of organic compounds in sea spray aerosol (SSA) alters its optical properties, hygroscopicity, cloud condensation, and ice nucleation properties and thus affects Earth’s radiative budget. In the past, SSA has been difficult to characterize, because of low concentrations relative to background pollutants. Nascent SSA was generated during a mesocosm, using a wave-flume at the University of California, San Diego and was characterized for saccharides and inorganic ions in order to assess their relative enrichment in fine (PM2.5) and coarse (PM10-2.5) SSA and sea surface microlayer (SSML) relative to seawater. For the first time, we showed that saccharides comprise a significant fraction of organic matter in fine and coarse SSA contributing 11 % and 27 %, respectively. Relative to sodium, saccharides were enriched 14-1314 times in fine SSA, 3-138 times in coarse SSA, but only up to 1.0-16.2 times in SSML. The saccharide and ion concentration in SSML and persistent whitecap foam was quantitatively assessed by another mesocosm study performed under controlled conditions. We demonstrated that relative to sodium, saccharides were enriched 1.7-6.4 times in SSML and 2.1-12 times in foam. Higher enrichment of saccharides in foam over the SSML indicates that surface active organic compounds become increasingly enriched on aged bubble film surfaces. Similarly, we showed that fine SSA contains saccharides characteristic of energy-related polysaccharides, while coarse SSA contains saccharides that are characteristic of structure-related polysaccharides. The ultrafiltration studies showed that structure-related polysaccharides effectively coagulate to form large particulate organic matter and size is likely the reason for their exclusion from small SSA. The enrichment of organic species in SSML, foam and SSA led to an enrichment of inorganic ions probably through chelation with organic molecules. Mean enrichment factors for major ions demonstrated the highest enrichment in fine SSA for potassium (1.3), magnesium (1.4), and calcium (1.7). Consequently, due to these organic and inorganic enrichments, SSA develops a significantly different chemical profile compared to seawater. These improved chemical profiles of SSA should be used to develop laboratory proxies to further study the transfer of organic matter across the ocean-air interface and the physical properties of SSA. .
Overall, the results presented in this dissertation provide new chemical profiles for previously understudied emission sources like peatland fire emissions, and previously unquantified chemical species like F- in biomass burning emissions and enrichment of saccharides and ions in SSA. These data could be used in updating regional and global emission inventories, atmospheric modeling and human exposure studies.
|
183 |
The colour of climate : A study of raised bogs in south-central SwedenBorgmark, Anders January 2005 (has links)
<p>This thesis focuses on responses in raised bogs to changes in the effective humidity during the Holocene. Raised bogs are terrestrial deposits that can provide contiguous records of past climate changes. Information on and knowledge about past changes in climate is crucial for our understanding of natural climate variability. Analyses on different spatial and temporal scales have been conducted on a number of raised bogs in south-central Sweden in order to gain more knowledge about Holocene climate variability.</p><p>Peatlands are useful as palaeoenvironmental archives because they develop over the course of millennia and provide a multi-faceted contiguous outlook on the past. Peat humification, a proxy for bog surface wetness, has been used to reconstruct palaeoclimate. In addition measurements of carbon and nitrogen on sub-recent peat from two bogs have been performed. The chronologies have been constrained by AMS radiocarbon dates and tephrochronology and by SCPs for the sub-recent peat.</p><p>A comparison between a peat humification record from Värmland, south-central Sweden, and a dendrochronological record from Jämtland, north-central Sweden, indicates several synchronous changes between drier and wetter climate. This implies that changes in hydrology operate on a regional scale.</p><p>In a high resolution study of two bogs in Uppland, south-central Sweden, C, N and peat humification have been compared to bog water tables inferred from testate amoebae and with meteorological data covering the last 150 years. The results indicate that peat can be subjected to secondary decomposition, resulting in an apparent lead in peat humification and C/N compared to biological proxies and meteorological data.</p><p>Several periods of wetter conditions are indicated from the analysis of five peat sequences from three bogs in Värmland. Wetter conditions around especially c. 4500, 3500, 2800 and 1700-1000 cal yr BP can be correlated to several other climate records across the North Atlantic region and Scandinavia, indicating wetter and/or cooler climatic conditions at these times. Frequency analyses of two bogs indicate periodicities between 200 and 400 years that may be caused by cycles in solar activity.</p>
|
184 |
Palsa Growth and Decay in Northern Sweden : Climatic and Environmental ControlsZuidhoff, Frieda S. January 2003 (has links)
<p>This thesis outlines the development and decay of palsas in northern Sweden in relation to climatic and environmental factors. Palsas were investigated on morphology, vegetation, peat porosity, ground temperature and local climate in four bogs situated on a north-south gradient in northern Sweden. A new classification for palsa stages (embryo, young, mature, degrading and remnant stage), based on morphological and vegetational characteristics, is proposed and described in the thesis. The start of palsa growth seems to be favoured by a low vegetation height and a high cover of <i>Sphagnum</i> mosses. Very high porosities were measured in this peat type, resulting in a high insulation capacity preserving the frozen ground in summer. A decrease of porosities in the surface peat layer from the embryo palsa stage to the mature and degrading palsa stage was found. This contributes to the degrading of palsas, due to higher thermal diffusivities in palsas with lower porosities. The aggradation of the ice core can also cease due to the observed change in vegetation from low vegetation on embryo and young palsas to vegetation with tall <i>Betula nana</i> shrubs on degrading palsas. This was found to cause thicker snow cover that prevents frost penetration into the palsa core. The present climate conditions (with mean annual temperature of –1.5°C and annual precipitation of 737 mm) at the boundary of palsa distribution in Sweden were found to be unsuitable for palsa development. Palsa growth started here during a cold period in the last part of the Little Ice Age, with estimated mean annual and mean winter temperatures of –2.3°C and –10.0°C, respectively. </p><p>The major conclusions are that besides air temperature, depth of snow cover, summer precipitation and hydrology, also vegetation cover and peat characteristics are important for palsa growth and decay.</p>
|
185 |
Peat as a fuel at the proposed Central Maine Power Company 600 mw plantJones, William J. 12 1900 (has links)
No description available.
|
186 |
Thermochemical and Catalytic Upgrading in a Fuel Context : Peat, Biomass and AlkenesHörnell, Christina January 2001 (has links)
No description available.
|
187 |
Palsa Growth and Decay in Northern Sweden : Climatic and Environmental ControlsZuidhoff, Frieda S. January 2003 (has links)
This thesis outlines the development and decay of palsas in northern Sweden in relation to climatic and environmental factors. Palsas were investigated on morphology, vegetation, peat porosity, ground temperature and local climate in four bogs situated on a north-south gradient in northern Sweden. A new classification for palsa stages (embryo, young, mature, degrading and remnant stage), based on morphological and vegetational characteristics, is proposed and described in the thesis. The start of palsa growth seems to be favoured by a low vegetation height and a high cover of Sphagnum mosses. Very high porosities were measured in this peat type, resulting in a high insulation capacity preserving the frozen ground in summer. A decrease of porosities in the surface peat layer from the embryo palsa stage to the mature and degrading palsa stage was found. This contributes to the degrading of palsas, due to higher thermal diffusivities in palsas with lower porosities. The aggradation of the ice core can also cease due to the observed change in vegetation from low vegetation on embryo and young palsas to vegetation with tall Betula nana shrubs on degrading palsas. This was found to cause thicker snow cover that prevents frost penetration into the palsa core. The present climate conditions (with mean annual temperature of –1.5°C and annual precipitation of 737 mm) at the boundary of palsa distribution in Sweden were found to be unsuitable for palsa development. Palsa growth started here during a cold period in the last part of the Little Ice Age, with estimated mean annual and mean winter temperatures of –2.3°C and –10.0°C, respectively. The major conclusions are that besides air temperature, depth of snow cover, summer precipitation and hydrology, also vegetation cover and peat characteristics are important for palsa growth and decay.
|
188 |
The colour of climate : A study of raised bogs in south-central SwedenBorgmark, Anders January 2005 (has links)
This thesis focuses on responses in raised bogs to changes in the effective humidity during the Holocene. Raised bogs are terrestrial deposits that can provide contiguous records of past climate changes. Information on and knowledge about past changes in climate is crucial for our understanding of natural climate variability. Analyses on different spatial and temporal scales have been conducted on a number of raised bogs in south-central Sweden in order to gain more knowledge about Holocene climate variability. Peatlands are useful as palaeoenvironmental archives because they develop over the course of millennia and provide a multi-faceted contiguous outlook on the past. Peat humification, a proxy for bog surface wetness, has been used to reconstruct palaeoclimate. In addition measurements of carbon and nitrogen on sub-recent peat from two bogs have been performed. The chronologies have been constrained by AMS radiocarbon dates and tephrochronology and by SCPs for the sub-recent peat. A comparison between a peat humification record from Värmland, south-central Sweden, and a dendrochronological record from Jämtland, north-central Sweden, indicates several synchronous changes between drier and wetter climate. This implies that changes in hydrology operate on a regional scale. In a high resolution study of two bogs in Uppland, south-central Sweden, C, N and peat humification have been compared to bog water tables inferred from testate amoebae and with meteorological data covering the last 150 years. The results indicate that peat can be subjected to secondary decomposition, resulting in an apparent lead in peat humification and C/N compared to biological proxies and meteorological data. Several periods of wetter conditions are indicated from the analysis of five peat sequences from three bogs in Värmland. Wetter conditions around especially c. 4500, 3500, 2800 and 1700-1000 cal yr BP can be correlated to several other climate records across the North Atlantic region and Scandinavia, indicating wetter and/or cooler climatic conditions at these times. Frequency analyses of two bogs indicate periodicities between 200 and 400 years that may be caused by cycles in solar activity.
|
189 |
Temperature sensitivity of decomposition in a boreal mixed mire in northern SwedenJohansson, Linda January 2010 (has links)
Carbon accumulation in soils constitutes a significant sink for carbon. How the climate change with increasing temperatures will affect the soil carbon storage represents uncertainty of the predictions in the climate change ecosystem feedback mechanisms. In this study the temperature impact on the decomposition of the large carbon pools in peatlands was investigated. Peat cores from different microtopographic units in a boreal oligotrophic minerogenic mire in northern Sweden were collected from in three depths (5-10, 10-15 and 15-20 centimeters below the surface). The samples were incubated at four temperatures: 4, 9, 14 and 19°C and the heterotrophic respiration (CO2- production) was measured hourly or 37 days. Unexpectedly, basal respiration did not show any correlation with temperature. However, the exponential increase in respiration (µ) was correlated with temperature: i.e. giving Q10 values between 2 (SE +/- 0.36) and 5 (SE +/-1.05). Soil depth or vegetation covers did not affect temperature response (Q10) of µ. The substrate induced respiration (SIR) did not occour but for a few of the samples. The conclusion from this study is that degradation of peat seams not be affected by a temperature increase. The addition of glucose, nitrogen and phosphorus increased with increasing temperature with a Q10 value as expected.
|
190 |
Hydrologic behaviour and hydraulic properties of a patterned fen in SaskatchewanHogan, Jaime Michele 30 January 2006
A patterned, partially-treed, fen in the mid-boreal region of central Saskatchewan was the site of renewed hydrological research from 2002 to 2004. Hydraulic conductivity, transmissivity, and storativity were determined through use of a surface loading test, pumping tests, and an enclosed field drainage test. None of these field tests have been previously described in the literature as having been used in peat environments. The combined results of field and laboratory drainage tests were used to obtain a general storativity with water table depth relationship in the upper peat layer. The hydraulic conductivity, measured with slug tests, the loading test, and pumping tests, is high near the surface, declining greatly with depth. These previously untested field methods have the advantage of representing volumes of peat from tenths of a meter to cubic meters. </p>Characterization of the hydrology of the peatland involved year round observations of water table, piezometric head, peat surface elevations, frost depth and peat temperatures. Fluctuations of the water table, and soil moisture changes produce changes in effective stress that lead to volume change in the highly compressible peat. This is particularly important for sites with thick peat deposits. Independent compressibility estimates were as high as 10-5 N/m2 in the upper peat. At three fen sites, changes in peat thickness were estimated from monthly estimates of effective stress change, using year round hydrological observations, and compared to measured annual peat thickness changes. Water table changes causing soil moisture changes, and freeze-thaw processes, explained the majority of peat surface movements.
|
Page generated in 0.045 seconds