• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing the Transient Flow Behavior in Falling-head Permeameter Tests

Cavdar, Sevgi 03 October 2013 (has links)
The proportionality constant in Darcy's Law is called hydraulic conductivity (K), and it is the most fundamental parameter to groundwater studies. There are a number of in situ and laboratory techniques employed to determine K, one of which is falling head permeameter (FHP). In FHP, determining K involves two steps: measuring hydraulic head change over time and calculating the K value. In the past, calculating K was done using Darcy's Law, which states linear correlation between the flux and the hydraulic gradient, but this is only true when the inertial forces are negligible at small velocities. At higher velocities, flow becomes unsteady because of the change over time in flow magnitude and hydraulic gradient, which requires mass conservation law to be combined with Darcy’s Law and eventually leads to Laplace’s equation for an incompressible matrix. If the media is compressible, specific storativity should be taken into account, as well. In this study, we investigated the transiency of flow in FHP tests by analyzing the effect of specific storativity on K calculations. We have developed a new semi- analytical solution for transient flow in FHP in Laplace domain and used the de Hoog algorithm to attain the inverse Laplace transform of this solution to yield solutions in time domain. We have also provided some analysis and a comparison of steady-state solution along with using experimental data and the data from the literature to analyze the solution. Upon these, we concluded that the transient flow in falling-head tests has minimal effect in general, although using the transient solution provided may improve the accuracy without a major effect.
2

Hydrologic behaviour and hydraulic properties of a patterned fen in Saskatchewan

Hogan, Jaime Michele 30 January 2006
A patterned, partially-treed, fen in the mid-boreal region of central Saskatchewan was the site of renewed hydrological research from 2002 to 2004. Hydraulic conductivity, transmissivity, and storativity were determined through use of a surface loading test, pumping tests, and an enclosed field drainage test. None of these field tests have been previously described in the literature as having been used in peat environments. The combined results of field and laboratory drainage tests were used to obtain a general storativity with water table depth relationship in the upper peat layer. The hydraulic conductivity, measured with slug tests, the loading test, and pumping tests, is high near the surface, declining greatly with depth. These previously untested field methods have the advantage of representing volumes of peat from tenths of a meter to cubic meters. </p>Characterization of the hydrology of the peatland involved year round observations of water table, piezometric head, peat surface elevations, frost depth and peat temperatures. Fluctuations of the water table, and soil moisture changes produce changes in effective stress that lead to volume change in the highly compressible peat. This is particularly important for sites with thick peat deposits. Independent compressibility estimates were as high as 10-5 N/m2 in the upper peat. At three fen sites, changes in peat thickness were estimated from monthly estimates of effective stress change, using year round hydrological observations, and compared to measured annual peat thickness changes. Water table changes causing soil moisture changes, and freeze-thaw processes, explained the majority of peat surface movements.
3

Hydrologic behaviour and hydraulic properties of a patterned fen in Saskatchewan

Hogan, Jaime Michele 30 January 2006 (has links)
A patterned, partially-treed, fen in the mid-boreal region of central Saskatchewan was the site of renewed hydrological research from 2002 to 2004. Hydraulic conductivity, transmissivity, and storativity were determined through use of a surface loading test, pumping tests, and an enclosed field drainage test. None of these field tests have been previously described in the literature as having been used in peat environments. The combined results of field and laboratory drainage tests were used to obtain a general storativity with water table depth relationship in the upper peat layer. The hydraulic conductivity, measured with slug tests, the loading test, and pumping tests, is high near the surface, declining greatly with depth. These previously untested field methods have the advantage of representing volumes of peat from tenths of a meter to cubic meters. </p>Characterization of the hydrology of the peatland involved year round observations of water table, piezometric head, peat surface elevations, frost depth and peat temperatures. Fluctuations of the water table, and soil moisture changes produce changes in effective stress that lead to volume change in the highly compressible peat. This is particularly important for sites with thick peat deposits. Independent compressibility estimates were as high as 10-5 N/m2 in the upper peat. At three fen sites, changes in peat thickness were estimated from monthly estimates of effective stress change, using year round hydrological observations, and compared to measured annual peat thickness changes. Water table changes causing soil moisture changes, and freeze-thaw processes, explained the majority of peat surface movements.
4

Hydraulic Properties of the Table Mountain Group (TMG) Aquifers.

Lin, Lixiang. January 2008 (has links)
<p><font face="TimesNewRoman"> <p align="left">Research findings in current study provide a new insight into the fractured rock aquifers in the TMG area. Some of the results will have wide implications on the groundwater management and forms a solid basis the further study of the TMG aquifers.</p> </font></p>
5

Hydraulic Properties of the Table Mountain Group (TMG) Aquifers.

Lin, Lixiang. January 2008 (has links)
<p><font face="TimesNewRoman"> <p align="left">Research findings in current study provide a new insight into the fractured rock aquifers in the TMG area. Some of the results will have wide implications on the groundwater management and forms a solid basis the further study of the TMG aquifers.</p> </font></p>
6

Hydraulic properties of the table mountain group (TMG) aquifers

Titus, Rian January 2008 (has links)
Philosophiae Doctor - PhD / Research findings in current study provide a new insight into the fractured rock aquifers in the TMG area. Some of the results will have wide implications on the groundwater management and forms a solid basis the further study of the TMG aquifers.
7

Hydraulic properties of the Table Mountain Group (TMG) aquifers

Lin, Lixiang January 2008 (has links)
Philosophiae Doctor - PhD / Research findings in current study provide a new insight into the fractured rock aquifers in the TMG area. Some of the results will have wide implications on the groundwater management and forms a solid basis the further study of the TMG aquifers.
8

Groundwater management model for the Spitskop area in South Africa

Bulasigobo, Ridovhona Joubert January 2014 (has links)
Masters of Science / The thesis investigates the potential of the Rietfontein and Spitskop aquifer to meet a demand of 1000 m3/d (12 Lis) as an alternative water resource for the Rietfontein and Spitskop Community. Increasing demand for clean and hygienic drinking water puts more pressure on one of our most valuable resources and supplying all communities with surface water is an extremely difficult and costly task in rural areas like Rietfontein and Spitskop in South Africa. Therefore it is necessary that interim water supplies be found from local aquifers and be utilized to address water supply challenges. Groundwater may serve as a short-term and an interim water supply which may be useful during future dry periods. Abstraction of groundwater is sensitive to recharge. Due to semi-arid conditions in Rietfontein and Spitskop area, there is high rainfall variation and disparity each year. During the research, hydrocensus was carried out. Water samples for chemistry analysis were taken. Literature review and pumping test data was utilized from the previous studies done by different consultants (Botha, 2000, Vivier and Pretorius, 2003). A numerical groundwater flow model for the local aquifers in the area and surroundings was constructed focusing on recharge and abstraction scenarios for the water supply from the local aquifers. For Rietfontein and Spitskop area, the mean annual precipitation (MAP) is 617mm/year. To be assured and rational in determining aquifers ability to meet the required demand a recharge with ninety-five (95th ) percentile was recommended, which estimates the MAP of 308mm/year which is 50% lower than the average MAP of 617mm/year. For a period of ninety six (96) years, the data indicates a severe drought occurred four (4) times where the rainfall was even lower than 95th percentile level of assurance of recharge estimated. This gives a comprehensible indication that average mean is not ideal or steadfast stature when building a water supply numerical groundwater flow modelling. These aquifers can only be exploited and managed if a reliable method can be obtained to estimate their long-term sustainable potential, since the sustainable potential of these aquifers to supply the communities is dependent upon the recharge from rainfall. The results from a numerical groundwater flow model indicated that a combined potential from the local aquifer from eighteen (18) boreholes is sufficient to meet the required demand and a total of 2600m3 Id can potentially be abstracted from the aquifer. With ninety-five (95th ) percentile recharge rate of 308mm/year a numerical groundwater flow model shows that the rate of abstraction is 80% far less than recharge, which gives high level of assurance in terms of local aquifer water supply demand. The abstraction of the boreholes confirmed by a numerical groundwater flow model shows the least impact on the surrounding aquifer for an extended period of time. In the event of drought, the boreholes will see a decline in water level after two (2) months of pumping local aquifer. The water level will decline steadily from two (2) months to two (2) years with a change in water levels of up to 40m. The impact of the drought is minimal compared to recharge rate, which verifies less depletion of the aquifer. The local aquifer shows the potential of 3MLld can be supplied to the communities with an assurance level of 95th percentile of rainfall. Reliable quantification of groundwater recharge rate remains the main challenges the hydrologist experienced and further research is essential for improvement of groundwater management for the area concerned.
9

Flow Dynamics and Management Options in Stressed Carbonate Aquifer System, The Western Aquifer Basin, Palestine / Grundwasserdynamik und Optionen zur Bewirtschaftung des beanspruchten Karbonat-Aquifer-Systems des Western-Aquifer-Basins, Palästina.

Abusaada, Muath Jamil 27 June 2011 (has links)
No description available.
10

Méthodologie d’analyse des signaux et caractérisation hydrogéologique : application aux chroniques de données obtenues aux laboratoires souterrains du Mont Terri, Tournemire et Meuse/Haute-Marne / Signal analyzis methodology and hydrogeologic characterization : application to time series collected at the underground research laboratories of Mont Terri, Tournemire, and Meuse/Haute-Marne

Fatmi, Hassane 29 May 2009 (has links)
Ce rapport présente des méthodes de prétraitement, d'analyse statistique et d'interprétation de chroniques hydrogéologiques de massifs peu perméables (argilites) dans le cadre d'études sur le stockage profond de déchets radioactifs. Les séries temporelles analysées sont la pression interstitielle et la pression atmosphérique, en relation avec différents phénomènes (marées terrestres, effet barométrique, évolution de l'excavation des galeries). Les pré-traitements permettent de reconstituer et homogénéiser les chroniques de données en présence de lacunes, aberrations, et pas de temps variables. Les signaux prétraités sont ensuite analysés en vue de caractériser les propriétés hydrauliques du massif peu perméable (emmagasinement spécifique ; porosité effective). Pour cela, on a développé et mis en oeuvre les méthodes d'analyses suivantes (implémentées en Matlab): analyses corrélatoires et spectrales (Fourier) ; analyses ondelettes multirésolution ; enveloppes de signaux aléatoires. Cette méthodologie est appliquée aux données acquises au Laboratoire Souterrain du Consortium International du Mont Terri (Jura Suisse), ainsi qu'à certaines données des Laboratoires Souterrains de Tournemire (Aveyron) et de Meuse / Haute-Marne (ANDRA) / This report presents a set of statistical methods for pre-processing and analyzing multivariate hydrogeologic time series, such as pore pressure and its relation to atmospheric pressure. The goal is to study the hydrogeologic characteristics of low permeability geologic formations (argilite) in the context of deep disposal of radioactive waste. The pressure time series are analyzed in relation with different phenomena, such as earth tides, barometric effects, and the evolution of excavated galleries. The pre-processing is necessary for reconstituting and homogenizing the time series in the presence of data gaps, outliers, and variable time steps. The preprocessed signals are then analyzed with a view to characterizing the hydraulic properties of this type of low permeability formation (specific storativity; effective porosity). For this sake, we have developed and used the following methods (implemented in Matlab): temporal correlation analyses; spectral/Fourier analyses; multiresolution wavelet analyses envelopes of random processes. This methodology is applied to data collected at the URL (Underground Research Laboratory) of the Mont Terri International Consortium (Swiss Jura), as well as some other data collected at the URL of IRSN at Tournemire (Aveyron) and at the URL of ANDRA (Meuse / Haute-Marne)

Page generated in 0.0742 seconds