• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 8
  • 7
  • Tagged with
  • 47
  • 47
  • 25
  • 16
  • 16
  • 13
  • 13
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modelling heat and mass flow through packed pebble beds a heterogeneous volume-averaged approach /

Visser, Coert Johannes. January 2007 (has links)
Thesis (M.Eng. (Mechanical )) -- University of Pretoria, 2007. / Includes bibliographical references (leaves 73-81)
22

Modelling heat and mass flow through packed pebble beds : a heterogeneous volume-averaged approach

Visser, Coert Johannes 29 August 2008 (has links)
This work details modelling buoyancy-driven viscous flow and heat transfer through heterogeneous saturated packed pebble beds via a set of volume-averaged conservation equations in which local thermal disequilibrium is accounted for. The latter refers to the two phases considered viz. solid and fluid, differing in temperature. This is effected by describing each phase with its own governing equation. Further to the aforementioned, the governing equation set is written in terms of intrinsic volume-averaged material properties that are fully variant with respect to temperature. The heterogeneous solid phase is described with a porosity field varying from 0.39 to 0.99. The intent of the stated upper bound is to explicitly model typical packed bed near-wall phenomena such as wall-channelling and pebble-wall heat transfer as true to reality as possible, while maintaining scientific rigour. The set of coupled non-linear partial differential equations is solved via a locally preconditioned artificial compressibility method, where spatial discretisation is effected with a compact finite volume edge-based discretisation method. The latter is done in the interest of accuracy. Stabilisation is effected via JST scalar-valued artificial dissipation. This is the first instance in which an artificial compressibility algorithm is applied to modelling heat and fluid flow through heterogeneous porous materials. As a result of the aforementioned, calculation of the acoustic velocities, stabilisation scaling factors and allowable time-step sizes were revised. The developed technology is demonstrated by application to the modelling of SANA test cases, i.e. natural convective flow inside a heated porous axisymmetric cavity. Predicted results are shown to be within 12% of experimental measurements in all cases, while having an average deviation of only 3%. / Dissertation (MEng)--University of Pretoria, 2008. / Mechanical and Aeronautical Engineering / unrestricted
23

Irradiation induced effects on 6h-SIC

Sibuyi, Praise January 2012 (has links)
Philosophiae Doctor - PhD / The framework agreement in the year 2000 by the international community to launch Generation IV program with 10 nations, to develop safe and reliable nuclear reactors gave rise to the increased interest in the studies of SiC and the effect of different irradiations on solids. Silicon carbide is a preferred candidate used in harsh environments due to its excellent properties such as high chemical stability and strong mechanical strength. The PBMR technology promises to be the safest of all nuclear technology that have been developed before. SiC has been considered one candidate material being used in the fabrication of pebble bed fuel cell. Its outstanding physical and chemical properties even at high temperatures render it a material of choice for the future nuclear industry as whole and PBMR in particular. Due to the hostile environment created during the normal reactor operation, some of these excellent properties are compromised. In order to use this material in such conditions, it should have at least a near perfect crystal lattice to prevent defects that could compromise its strength and performance. A proper knowledge of the behavior of radiation-induced defects in SiC is vital. During irradiation, a disordered crystal lattice occurs, resulting in the production of defects in the lattice. These defects lead to the degradation of these excellent properties of a particular material. This thesis investigates the effects of various radiation effects to 6H-SiC. We have investigated the effects of radiation induced damages to SiC, with a description of the beds and the importance of the stability of the SiC-C interface upon the effects of radiations (y-rays, hot neutrons). The irradiated samples of 6H-SiC have been studied with various spectroscopic and structural characterization methods. The surface sensitive techniques such as Raman spectroscopy, UV-Vis, Photoluminescence and Atomic Force Microscopy will be employed in several complimentary ways to probe the effect of irradiation on SiC. The obtained results are discussed in details.
24

Properties of graphitic composites

Magampa, Philemon Podile January 2013 (has links)
The Pebble Bed Modular Reactor (PBMR) is a high temperature graphite-moderated nuclear reactor that uses helium as a coolant. The triple coated (TRISO) particles contain enriched uranium oxide fuel which is coated with layers of various forms of pyrolytic carbon and silicon carbide. The TRISO particles are further embedded in the matrix of spherical graphite pebbles. The graphite matrix is a composite moulded from a compound containing natural flake graphite (64 wt.%), synthetic graphite (16 wt.%) and a phenolic resin binder (20 wt.%) heated to 1800 °C in inert atmosphere. The graphitic composite provides structural integrity, encasement and act as a moderator material. In this work, low density model graphite composites similar to those used in nuclear applications as encasement material in fuel pebbles were made by uniaxial cold compression moulding. The graphitic composites contained various ratios of natural flake graphite and synthetic graphite at fixed phenolic novolac resin binder content of 20 wt.% (green state). The fabrication process employed entails mixing the graphite powders, followed by addition of methanol phenolic resin solution to the graphite powder mix, drying, grinding, milling and sieving; and finally compression moulding in a stainless steel die at 13 MPa using a hydraulic press. The green moulded disc specimens were then carbonized at 900 °C in nitrogen atmosphere to remove volatiles followed by annealing at 1800 °C in helium atmosphere. The annealing step diminishes structural defects and result in densification of the composites. The microstructure of fabricated graphitic composites was characterized using various techniques. Particle Size Distributions determined using Laser diffraction showed that the inclusion of the binder leads to agglomeration. The composite powders had larger mean particle sizes than the raw graphite powders showing the binding effect of the novolac phenolic resin. X-ray diffraction studies showed that the graphitic composites had a hexagonal crystal structure after annealing. Raman spectroscopy revealed the presence of the structurally disordered phase derived from the resin carbon (indicated by the pronounced D-band in the Raman spectra). XRD and Raman observations were consistent with literature and gave results supporting existing knowledge base. Optical microscopy revealed a flake-like microstructure for composites containing natural graphite and needle-coke like particles for composites containing mainly synthetic graphite. Optical microscopy confirmed that the effect of the manufacturing route employed here was to align the particles in the direction perpendicular to the compression moulding direction. As a result, the graphitic composites exhibited anisotropic property behavior. The bulk density of the composites increased with the increase in the natural graphite content due to compactability of natural flakes in the manufacturing route. Thermogravimetric analysis studies on the composites showed that they were stable in air to 650 °C. Composites containing mainly synthetic graphite were thermally more stable in air compared to their natural graphite counterparts. The linear coefficients of thermal expansion of the composites were measured using thermomechanical analysis (20-600 °C). In the moulding direction, the average CTE (αP) values were in the range (5-9) × 10-6 K-1 and increased with increment in the natural graphite content in the composite. In the direction perpendicular to moulding direction, the average CTE (αN) values were in the range (1.7-2.1) × 10-6 K-1 showing that the expansion was similar or constant in this direction. Therefore an anisotropic expansion ratio, i.e. αP:αN, of about 3 was observed in the composites. This anisotropy is attributable to the alignment of the filler particles in the manufacturing route. The thermal conductivity of the annealed composites were measured in the pressing direction from 100 to 1000 °C and the values ranged from 19 to 30 W m-1 K-1. Anisotropy was also observed as far as strength was concerned. A composite containing 64:16:20 wt.% ratio had the best mechanical properties, high thermal conductivity and slightly high expansion coefficient. This work demonstrates the complimentary properties of the graphite fillers in the composites. It also reports for the first time, data on the effect of variation of the filler graphites on microstructure and properties of model low density compression moulded graphitic composites. / Thesis (PhD)--University of Pretoria, 2013. / gm2014 / Chemistry / unrestricted
25

INVESTIGATION ON USING NEUTRON COUNTING TECHNIQUES FOR ONLINE BURNUP MONITORING OF PEBBLE BED REACTOR FUELS

ZHAO, ZHONGXIANG January 2004 (has links)
No description available.
26

Indirect measurement of reactor fuel temperature

Oswald, Elbrecht 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Regulators and designers of nuclear reactors regard knowledge of the pebble fuel temperature as important, due to the role that it plays in maintaining structural integrity and the production of neutrons. By using special fuel assemblies fitted with measuring equipment it is possible to measure the fuel temperature in stationary fuel reactors. This, however, is not possible in the pebble bed modular reactor due to its dynamic core. Designers of the pebble bed modular reactor have reserved special inspection channel borings inside the center reflector for fuel temperature measurement. By means of optical fibers and interferometry, the temperature can be measured inside such a channel. Currently the only way to control the fuel surface and core temperature is by measuring the gas inlet and outlet temperatures. This thesis attempts to determine the pebble temperature by measuring the temperature in a reflector channel. This is done by constructing an electrically heated pebble bed experimental setup simulating a cutout section of a pebble bed modular reactor core. An additional computational fluid dynamics simulation of the experimental setup was also performed. This thesis also attempts to determine if there is a measureable temperature peak that can indicate where a pebble was in contact with the reflector surface. This could then be used in future studies to determine the pebble fuel velocity as it moves down the reactor core. The computational fluid dynamics results were validated by experimental measurements. In the computational fluid dynamics model and experimental setup, it was found that there was indeed a measureable temperature difference on the temperature gradient along the reflector wall. The heat being conducted away from the pebble through the contact area can explain this. These differences were only observed when the channel was moved closer to the pebbles and it is therefore advised that some redesigning of the channel should be done if the in-core temperature is to be accurately interpreted by the designers at PBMR (Pty) Ltd. / AFRIKAANSE OPSOMMING: Reguleerders en ontwerpers van kern reaktore beskou die kennis van die korrel brandstof temperatuur as belangrik. Dit is weens die rol wat die brandstof temperatuur speel met die behoud van strukturele integriteit en die produksie van neutrone binne-in die reaktor. Met behulp van spesiale brandstof montasies toegerus met die meetings instrumentasie, is dit moontlik om die brandstof temperatuur in stilstaande brandstof reaktore te meet. Dit is egter nie moontlik in die korrel bed modulêre reaktor nie, as gevolg van sy dinamiese kern. Ontwerpers van die korrel bed modulêre reaktor het spesiale kanale in die binnekant van die middel reflektor vir brandstof temperatuur meeting gereseveer. Deur middel van optiese vesel en interferometrie, kan die temperatuur binne so 'n kanaal gemeet word. Tans is die enigste manier om die brandstof-oppervlak temperatuur te berekern, net moontlik deur gebruik te maak van die gemete gas inlaat-en uitlaat temperature van die reaktor. Hierdie tesis poog om vas te stel of die korrel brandstof temperatuur deur die meet van die oppervlak temperatuur in 'n reflektor-kanaal bepaal kan word. Dit word gedoen deur 'n elektriese verhitte korrel bed eksperimentele opstelling te bou wat 'n gedeelte van 'n korrel bed modulêre reaktor simuleer. 'n Bykomende numeriese simulasie van die eksperimentele opstelling was ook uitgevoer. Hierdie werk het ook probeer om vas te stel of daar 'n meetbare temperatuur piek op die temperatuur profiel aandui kan word waar 'n korrel in kontak is met die reflektor se oppervlak. Dit kan dan in toekomstige studies gebruik word om te bepaal wat die korrel brandstof spoed was soos dit in die reaktor beweeg. Die numerise simulasie uitslae was deur eksperimentele metings bevestig. In die numerise simulasie model en die eksperimentele opstelling, is daar gevind dat daar inderdaad 'n meetbare temperatuur verskil op die temperatuurgradiënt teen die reflektor oppervlak is. Dit kan verduidelik word as gevolg van die hitte wat weg van die korrel gelei word deur middel van die kontak area. Hierdie verskille was slegs waargeneem wanneer die kanaal nader aan die korrels geskuif is en dit word as n aanbeveling aan PBMR (Pty) Ltd gemaak om sommige herontwerpe aan die kanaal te doen indien die in-kerntemperatuur gemeet wil word en akkuraat geinterpreteer wil word.
27

Introductory investigation of the Ranque-Hilsch vortex tube as a particle separation device for the PBMR

Burger, Anja 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The Pebble Bed Modular Reactor (PBMR) is a Generation IV graphite-moderated helium cooled nuclear reactor which is being developed in South Africa. The PBMR design is based on the German Arbeitsgemeinschaft Versuchreaktor (AVR). The AVR was decommissioned in December 1988 due to operational and safety problems. The PBMR project has put a lot of emphasis on safety and therefore all safety issues relating to the AVR have to be addressed before this technology can be implemented. After the decommissioning of the AVR plant, technicians found radioactive isotopes of cesium 55Cs137, 55Cs134, silver 44Ag110 and strontium 38Sr90 as well as graphite dust in the primary coolant loop of the reactor. These isotopes as well as the graphite dust have to be removed from the helium coolant stream because it can be potentially harmful to equipment, personnel and the general public. The main objective of this thesis is therefore to investigate a separation method for removing the graphite dust (and with it the radioactive isotopes) from the helium coolant stream and also test this method under different operating conditions and geometrical configurations to determine its dust separation efficacy. The device chosen to investigate is the Ranque-Hilsch vortex tube. The Ranque-Hilsch vortex tube (RHVT) is a simple device having no moving parts that produces a hot and cold air stream simultaneously at its two ends from a compressed air source. The vortex generated by the vortex generator located at the inlet of the RHVT causes strongly rotating flows similar in speed to that of a gas centrifuge. The gas centrifuge is used for isotope separation. The RHVT, in theory, can therefore be implemented to separate the graphite/silver isotopes from the helium coolant with the added benefit of either cooling or heating the coolant and was thus selected as the separation technique to be tested experimentally. The dust separation efficiency of the RHVT was tested experimentally using different grades of graphite dust, different fluids, various inlet volumetric flow rates and volume fractions and different RHVT geometries. The experimental results showed that the RHVT has a dust separation efficiency of more than 85 %. A regression analysis was also done with the experimental data to obtain a correlation between the different operating conditions (such as volumetric flow rate) and the dust separation efficiency that can be used to predict the dust efficiency under different operating and geometric conditions (such as the PBMR environment). An analytical model is also presented to describe the ‘temperature separation’ phenomenon in the RHVT, using basic thermo-physical principals to gain a better understanding of how the RHVT works. A CFD analysis was also attempted to supplement the analytical analysis but the solution did not converge and therefore only the preliminary results of the analysis are discussed. / AFRIKAANSE OPSOMMING: Die “Pebble Bed Modular Reactor” (PBMR) is `n vierde generasie grafiet gemodereede en helium verkoelde reaktor wat in Suid-Afrika ontwikkel word. Die PBMR ontwerp is gebaseer op the Duitse Arbeitsgemeinschaft Versuchreaktor (AVR) wat buite werking gestel is in Desember 1988 as gevolg van operasionele en veiligheidsprobleme. Die PBMR projek lê baie klem op veiligheid en daarom moet alle veiligheidskwessies van die AVR eers aangespreek word voor die tegnologie geimplementeer kan word. Nadat die AVR buite werking gestel is, het AVR tegnisie radioaktiewe isotope van cesium 55Cs137, 55Cs134, silwer 44Ag110 en strontium 38Sr90 asook grafiet stof in die primêre stroomkring van die reaktor gevind. Hierdie isotope sowel as die grafiet stof moet uit die helium verkoelingsmiddel in die primere stroomkring van die reaktor verwyder word aangesien dit dalk skadelik kan wees vir toerusting, personeel en die publiek. Die hoofdoelwit van hierdie tesis is dus om `n skeidingstekniek te ondersoek wat die stof (en dus ook die radioaktiewe isotope) uit die helium verkoelingsmiddel kan verwyder. Hierdie tegniek moet dan getoets word onder verskillende operasionele en geometriese toestande om die skeidingsbenuttingsgraad te bepaal. Die toestel wat gekies is om ondersoek te word is die “Ranque-Hilsch Vortex Tube”. Die “Ranque-Hisch Vortex Tube” (RHVT) is a eenvoudige uitvindsel wat geen bewegende parte bevat nie en wat warm en koue lug gelyktydig produseer vanaf `n saamgepersde lugbron. ‘n Baie sterk roteerende vloei word gegenereer in die RHVT wat dieselfde snelhede bereik as die lug in `n gas-sentrifugeerder. Die gas- sentrifugeerder word gebruik as `n isotoopskeidingsapparaat. In teorie kan die RHVT dus ook gebruik word om partikels te skei as gevolg van die sterk roteerende vloei, met die voordeel dat dit ook die lug kan verhit en verkoel. As gevolg van hierde redes is die RHVT gekies as die skeidingstegniek om te ondersoek en dus experimenteel te toets. Die benuttingsgraad van die RHVT se vermoë om die grafiet stof van die lug te skei was gevolglik eksperimenteel getoets deur gebruik te maak van verskillende gehaltes grafiet stof, verskillende vloeistowwe (lug of helium), verskillende inlaat volumevloeitempos en volume fraksies en RHVT geometrieë. Die experimentele resultate het getoon dat die RHVT `n benuttingsgraad van meer as 85 % het. `n Regressie analise was ook gedoen met die eksperimentele data om `n korrelasie tussen die verskillende opersionele toestande (soos volumevloeitempo) en die stof skeiding benuttingsgraad te kry. Hierdie korrelasie kan dan gebruik word om die stofskeidingsbenuttingsgraad onder ander operasionele en geometriese omstandighede, soos die PBMR omgewing, te voorspel. `n Analitiese model word ook voorgestel om die “temperatuur-skeidings” meganisme in die RHVT te verduidelik, met die hulp van basiese termo-fisiese beginsels, om beter te verstaan hoe dit werk. Daar was ook gepoog om `n CFD analise te doen wat die analitiese model kon aanvul, maar die numeriese oplossing het nie gekonvergeer nie en dus word net die voorlopige resultate van dié analise bespreek.
28

Numerical simulation of flow distribution for pebble bed high temperature gas cooled reactors

Yesilyurt, Gokhan 30 September 2004 (has links)
The premise of the work presented here is to use a common analytical tool, Computational Fluid dynamics (CFD), along with a difference turbulence models. Eddy viscosity models as well as state-of-the-art Large Eddy Simulation (LES) were used to study the flow past bluff bodies. A suitable CFD code (CFX5.6b) was selected and implemented. Simulation of turbulent transport for the gas through the gaps of the randomly distributed spherical fuel elements (pebbles) was performed. Although there are a number of numerical studies () on flows around spherical bodies, none of them use the necessary turbulence models that are required to simulate flow where strong separation exists. With the development of high performance computers built for applications that require high CPU time and memory; numerical simulation becomes one of the more effective approaches for such investigations and LES type of turbulence models can be used more effectively. Since there are objects that are touching each other in the present study, a special approach was applied at the stage of building computational domain. This is supposed to be a considerable improvement for CFD applications. Zero thickness was achieved between the pebbles in which fission reaction takes place. Since there is a strong pressure gradient as a result of high Reynolds Number on the computational domain, which strongly affects the boundary layer behavior, heat transfer in both laminar and turbulent flows varies noticeably. Therefore, noncircular curved flows as in the pebble-bed situatio n, in detailed local sense, is interesting to be investigated. Since a compromise is needed between accuracy of results and time/cost of effort in acquiring the results numerically, selection of turbulence model should be done carefully. Resolving all the scales of a turbulent flow is too costly, while employing highly empirical turbulence models to complex problems could give inaccurate simulation results. The Large Eddy Simulation (LES) method would achieve the requirements to obtain a reasonable result. In LES, the large scales in the flow are solved and the small scales are modeled. Eddy viscosity and Reynolds stress models were also be used to investigate the applicability of these models for this kind of flow past bluff bodies at high Re numbers.
29

The influence of the number of fuel passes through a pebble bed core on the coupled neutronics / thermalhydraulics characteristics / by Wilna Geringer

Geringer, Josina Wilhelmina January 2010 (has links)
The increasing demand for energy and the effect on climate change are some of the big drivers in support of the nuclear renaissance. A great amount of energy is spent on studies to determine the contribution of nuclear power to the future energy supply. Many countries are investing in generation III and IV reactors such as the Westinghouse AP1000 because of its passive cooling system, which makes it attractive for its safety. The pebble bed high temperature gas cooled reactors are designed to be intrinsically safe, which is one of the main drivers for developing these reactors. A pebble bed reactor is a high temperature reactor which is helium–cooled and graphitemoderated using spherical fuel elements that contain triple–coated isotropic fuel particles (TRISO). The success of its intrinsic safety lies in the design of the fuel elements that remain intact at very high temperatures. When temperatures significantly higher than 1600 °C are reached during accidents, the fuel elements with their inherent safety features may be challenged. A pebble bed reactor has an online fuelling concept, where fuel is circulated through the core. The fuel is loaded at the top of the core and through gravity, moves down to the bottom where it is unloaded to either be discarded or to be re–circulated. This is determined by the burnup measuring system. By circulating the fuel spheres more than once through the reactor a flattened axial power profile with lower power peaking and therefore lower maximum fuel temperatures can be achieved. This is an attractive approach to increase the core performance by lowering the important fuel operating parameters. However, the circulation has an economic impact, as it increases the design requirements on the burnup measuring system (faster measuring times and increased circulation). By adopting a multi–pass recycling scheme of the pebble fuel elements it is shown that the axial power peaking can be reduced The primary objective for this study is the investigation of the influences on the core design with regards to the number of fuel passes. The general behaviour of the two concepts, multi–pass refuelling and a once–through circulation, are to be evaluated with regards to flux and power and the maximum fuel temperature profiles. The relative effects of the HTR–Modul with its cylindrical core design and the PBMR 400 MW with its annular core design are also compared to verify the differences and trends as well as the influences of the control rods on core behaviour. This is important as it has a direct impact on the safety of the plant (that the fuel temperatures need to remain under 1600 °C in normal and accident conditions). The work is required at an early stage of reactor design since it influences design decisions needed on the fuel handling system design and defuel chute decay time, and has a direct impact on the fuel burnup–level qualification. The analysis showed that in most cases the increase in number of fuel passes not only flattens the power profile, but improves the overall results. The improvement in results decreases exponentially and from ten passes the advantage of having more passes becomes insignificant. The effect of the flattened power profile is more visible on the PBMR 400 MW than on the HTR–Modul. The 15–pass HTR–Modul design is at its limit with regards to the measuring time of a single burnup measuring system. However, by having less passes through the core, e.g. tenpasses, more time will be available for burnup measurement. The PBMR 400 MW has three defuel chutes allowing longer decay time which improves measurement accuracy, and, as a result could benefit from more than six passes without increasing the fuel handling system costs. The secondary objective of performing a sensitivity analysis on the control rod insertion positions and the effect of higher fuel enrichment has also been achieved. Control rod efficiency is improved when increasing the excess reactivity by means of control rod insertion. However, this is done at lower discharge burnup and shut down margins. Higher enrichment causes an increase in power peaking and more fuel–passes will be required to maintain the peaking and temperature margins than before. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
30

The influence of the number of fuel passes through a pebble bed core on the coupled neutronics / thermalhydraulics characteristics / by Wilna Geringer

Geringer, Josina Wilhelmina January 2010 (has links)
The increasing demand for energy and the effect on climate change are some of the big drivers in support of the nuclear renaissance. A great amount of energy is spent on studies to determine the contribution of nuclear power to the future energy supply. Many countries are investing in generation III and IV reactors such as the Westinghouse AP1000 because of its passive cooling system, which makes it attractive for its safety. The pebble bed high temperature gas cooled reactors are designed to be intrinsically safe, which is one of the main drivers for developing these reactors. A pebble bed reactor is a high temperature reactor which is helium–cooled and graphitemoderated using spherical fuel elements that contain triple–coated isotropic fuel particles (TRISO). The success of its intrinsic safety lies in the design of the fuel elements that remain intact at very high temperatures. When temperatures significantly higher than 1600 °C are reached during accidents, the fuel elements with their inherent safety features may be challenged. A pebble bed reactor has an online fuelling concept, where fuel is circulated through the core. The fuel is loaded at the top of the core and through gravity, moves down to the bottom where it is unloaded to either be discarded or to be re–circulated. This is determined by the burnup measuring system. By circulating the fuel spheres more than once through the reactor a flattened axial power profile with lower power peaking and therefore lower maximum fuel temperatures can be achieved. This is an attractive approach to increase the core performance by lowering the important fuel operating parameters. However, the circulation has an economic impact, as it increases the design requirements on the burnup measuring system (faster measuring times and increased circulation). By adopting a multi–pass recycling scheme of the pebble fuel elements it is shown that the axial power peaking can be reduced The primary objective for this study is the investigation of the influences on the core design with regards to the number of fuel passes. The general behaviour of the two concepts, multi–pass refuelling and a once–through circulation, are to be evaluated with regards to flux and power and the maximum fuel temperature profiles. The relative effects of the HTR–Modul with its cylindrical core design and the PBMR 400 MW with its annular core design are also compared to verify the differences and trends as well as the influences of the control rods on core behaviour. This is important as it has a direct impact on the safety of the plant (that the fuel temperatures need to remain under 1600 °C in normal and accident conditions). The work is required at an early stage of reactor design since it influences design decisions needed on the fuel handling system design and defuel chute decay time, and has a direct impact on the fuel burnup–level qualification. The analysis showed that in most cases the increase in number of fuel passes not only flattens the power profile, but improves the overall results. The improvement in results decreases exponentially and from ten passes the advantage of having more passes becomes insignificant. The effect of the flattened power profile is more visible on the PBMR 400 MW than on the HTR–Modul. The 15–pass HTR–Modul design is at its limit with regards to the measuring time of a single burnup measuring system. However, by having less passes through the core, e.g. tenpasses, more time will be available for burnup measurement. The PBMR 400 MW has three defuel chutes allowing longer decay time which improves measurement accuracy, and, as a result could benefit from more than six passes without increasing the fuel handling system costs. The secondary objective of performing a sensitivity analysis on the control rod insertion positions and the effect of higher fuel enrichment has also been achieved. Control rod efficiency is improved when increasing the excess reactivity by means of control rod insertion. However, this is done at lower discharge burnup and shut down margins. Higher enrichment causes an increase in power peaking and more fuel–passes will be required to maintain the peaking and temperature margins than before. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.

Page generated in 0.0513 seconds