Spelling suggestions: "subject:"pentraxin"" "subject:"pentraxina""
1 |
Mise en évidence de l'interaction de la protéine tat du VIH-1 avec les pentraxines humaines : Impact sur la transcription du VIH et la différenciation des cellules dendritiquesMavoungou Bigouagou, Ulrick 12 November 2010 (has links) (PDF)
L'immunité innée et l'immunité adaptative constituent les deux volets du système immunitaire. Contrairement à l'immunité adaptative qui utilise un vaste répertoire de récepteurs spécifiques obtenus par réarrangements géniques, l'immunité innée utilise un nombre réduit de récepteurs appelés " Pattern Recognition Receptors " ou PRR. Les PRR reconnaissent des motifs hautement conservés et exclusivement exprimés par les micro-organismes, et appelés " Pathogen-Associated Molecular Patterns " ou PAMP. Les PRR sont soit associés aux cellules (impliqués dans l'endocytose et/ou la signalisation), soit solubles (impliqués dans l'élimination des micro-organismes et du soi modifié). Les pentraxines courtes (SAP et CRP) et longues (PTX3) sont des PRR solubles impliqués dans la capture du non-soi et/ou du soi modifié et facilitent leur élimination par les phagocytes. La protéine Tat du VIH-1 est indispensable à la synthèse du génome viral. Sa forme soluble, sécrétée par les cellules infectées, régule de nombreuses fonctions cellulaires. Cependant, la nature des structures de fixation de Tat soluble aux cellules reste mal connue. Nous avons montré que Tat interagit sélectivement avec les pentraxines SAP, CRP et PTX3. Cependant, et de manière inattendue, nous avons observé que seule la protéine CRP augmente la transcription in vitro du VIH-1 induite par Tat en favorisant son accumulation nucléaire. Nous avons également observé une influence significative de Tat et des complexes Tat/pentraxines sur la différenciation de monocytes en cellules dendritiques (DC). L'ensemble de ces données met en évidence un nouveau mécanisme mis en jeu par le VIH pour exploiter le bras humoral de l'immunité innée et échapper au système immunitaire. Des données préliminaires suggèrent également un rôle potentiel de Tat dans l'acquisition d'un phénotype immunosuppresseur par les cellules dendritiques. En parallèle, dans le cadre d'un projet fédératif portant sur la régulation d'expression du FcγRIII (CD16), nous avons montré que les cytokines IL-1β, IL-6, IL-10 et IL-21 induisent non seulement l'augmentation d'expression de CD16 sur les monocytes/macrophages et son induction sur les DC, mais également son acquisition par la sous population monocytaire CD14+ CD16-. Ces données suggèrent donc un rôle de ces cytokines dans la modulation d'expression de CD16 par les cellules myéloïdes.
|
2 |
Mise en évidence d'une altération fonctionnelle du récepteur soluble de l'immunité innée PTX3 dans la mucoviscidoseHamon, Yveline 08 February 2013 (has links) (PDF)
La pentraxine longue PTX3, récepteur soluble de l'immunité innée, joue un rôle important dans la protection contre certains pathogènes, en favorisant leur élimination et l'initiation de réponses immunitaires protectrices. PTX3 a notamment un rôle protecteur lors d'infections par Aspergillus fumigatus et Pseudomonas aeruginosa. La mucoviscidose, maladie héréditaire grave à transmission autosomique récessive, est caractérisée par des infections pulmonaires récurrentes, notamment par ces deux pathogènes. Nous avons donc émis l'hypothèse que le statut de PTX3 pourrait être altéré chez ces patients. L'expression et l'intégrité de PTX3 ont été analysées dans les expectorations de 51 patients atteints de mucoviscidose et de 7 patients atteints de broncho-pneumopathie chronique obstructive (BPCO). Les résultats montrent que la concentration de PTX3 est augmentée dans les sérums de patients atteints de mucoviscidose. Au contraire, la concentration de PTX3 dans les expectorations de patients atteints de mucoviscidose est considérablement plus faible que celle des patients atteints de BPCO. Cette faible concentration de PTX3 résulte d'un clivage protéolytique par l'élastase du neutrophile et par les protéases sécrétées par Aspergillus fumigatus. De manière intéressante, le domaine N-terminal de PTX3, impliqué dans la protection contre Aspergillus fumigatus, est préférentiellement dégradé par ces protéases. Cette dégradation est spécifique de la pentraxine longue PTX3 car les pentraxines courtes, CRP et SAP, ne sont pas dégradées. Ces résultats indiquent que la protéolyse sélective de PTX3 au niveau des voies respiratoires des patients atteints de mucoviscidose peut expliquer, en partie, les infections pulmonaires récurrentes par certains pathogènes.
|
3 |
Structural Studies On Winged Bean AgglutininsManoj, N 07 1900 (has links)
Lectins are multivalent carbohydrate binding proteins that specifically recognise diverse sugar structures and mediate a variety of biological processes, such as cell-cell and host-pathogen interactions, serum glycoprotein turnover and innate immune responses. Lectins have received considerable attention in recent years on account of their properties which have led to their wide use in research and biomedical applications. Seeds of leguminous plants are rich sources of lectins, but they are also found in all classes and families of organisms. Legume lectins have similar tertiary structures, but exhibit a large variety of quaternary structures. The carbohydrate binding site in them is made up of four loops, the first three of which are highly conserved in all legume lectins. The fourth loop, which is variable, is implicated in conferring specificity. Legume lectins which share the same monosaccharide specificity often exhibit markedly different oligosaccharide specificities. The introductory chapter gives a broad overview of lectins from a structural point of view.
The rest of the thesis is primarily concerned with structural studies on lectins from seeds of the winged bean (Psophocarpus tetragonolobus). Winged bean seeds contain a basic lectin (WBAI) (pi > 9.5) and an acidic lectin (WBAII) (pi -5.5). Both these lectins are N-glycosylated homodimers with about 240 amino acid residues per monomer. They show a high affinity for methyl-a-D-galactose at the monosaccharide level but have entirely different affinities for oligosaccharides. WBAI agglutinates human type A and B erythrocytes but not O type, while WBAII binds specifically to the terminally monofucosylated H-antigenic (responsible for O blood group reactivity) determinants on the cell surface. In this context, the current study seeks to characterise the carbohydrate binding site of a saccharide-free form of WBAI and determine the structural basis of carbohydrate recognition in WBAII. The study also aims to identify the factors responsible for the differences in carbohydrate specificities between WBAI and WBAII.
Diffraction data from a saccharide-free crystal form of WBAI and two crystal forms (Form I and II) of WBAII complexed with methyl-a-D-galactose were collected on a MAR imaging plate system mounted on a Rigaku RU200 rotating anode X-ray generator. The data were processed using the MAR-XDS and DENZO/SCALEPACK suites of programs. The structures were solved by the molecular replacement method using AMoRe. The model used in the case of WBAI and Form I of WBAII was the structure of WBAI in complex with methyl-a-D-galactose (PDB coderlWBL), while the structure of Form II of WBAH was solved using a partially refined model of Form I. The refinements and model building were performed using the programs X-PLOR/CNS and O respectively.
A comparison of the structures of the saccharide-free and bound forms of WBAI revealed three water molecules occupying the carbohydrate binding site, which mimic the hydrogen bonded interactions made by the saccharide in the structure of the complex. Also a shift of -0.6 A in the variable loop, towards the saccharide in the structure of the complex was observed. Significant differences in the conformation of a loop involved in crystal packing interactions were also observed. An analysis of protein hydration demonstrates, among other things, the role of water molecules in stabilising the structure of the loops around the carbohydrate binding site.
The crystal structures of the two forms of WBAH were solved at 3.0 A and 3.3. A resolution. The structure of the complex revealed the role of the length of the variable loop in generating the difference in oligosaccharide specificity between WBAI and WB All. The difference in the pi values between the two lectins is caused by substitutions occurring in loops and edges of sheets. A distinct structural difference between WBAH and all the other legume lectins of known structure is in the new disposition of the 34-45 loop with an r.m.s deviation of -6.0A in Coc positions compared to its position in other lectins. This change in conformation is caused by the formation of salt bridges by amino acid residues unique to WB All in the 34-45 loop and its neighbourhood. Thermodynamic studies on the binding of H-antigenic determinant to WBAII showed a predominance of entropic contribution suggesting a hydrophobically driven binding, not yet observed in lectin-sugar interactions. An analysis involving the docking of H-type II trisaccharide (Fuca(l-2)Galf}(l-4)GlcNAc) into the carbohydrate binding site and a comparison with the binding sites of other legume lectins revealed the role of a Tyr in the variable loop and an Asn in the second loop that are unique to WBAII in generating this unique binding property.
Earlier work on peanut lectin and WBAI demonstrated that the modes of dimerisation of legume lectins are governed by features intrinsic to the protein. A phylogenetic analysis of the sequences of all legume lectins whose structures are available has been performed to examine the relationship among the various classes of oligomers and classes of sugar specificity. The information thus obtained showed that groups of legume lectins that share a common mode of dimerisation cluster together. A sequence alignment based on structures revealed amino acid residues unique to each of these clusters that may be important in determining the modes of observed dimerisation.
While pursuing structural studies on WBAI and WBAII, the author has also been involved in an ongoing small molecule project in the laboratory, which involves preparation and X-ray structure determination of the complexes of carboxylic acids with amino acids and peptides. The work carried out in the project is described in the appendix.
|
Page generated in 0.066 seconds