• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 7
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 20
  • 12
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Plant-assisted bioremediation of perchlorate and the effect of plants on redox conditions and biodiversity in low and high organic carbon soil

Struckhoff, Garrett Cletus 01 December 2009 (has links)
Perchlorate is a known inhibitor of the human thyroid gland. Perchlorate is destroyed by ubiquitous perchlorate-reducing bacteria. The bacteria often lack sufficient electron donor. Research was undertaken to evaluate the relationship between plants and perchlorate-reducing bacteria. To what degree can plant-produced electron donors stimulate perchlorate reduction in low organic carbon (LOC) and high organic carbon (HOC) soil? A complication is that plants have been shown to influence redox conditions which may inhibit perchlorate reduction. The removal of perchlorate in a flow-through reactor was monitored with variables of soil organic carbon, hybrid poplar trees, and bioaugmentation. The biodiversity was monitored using denaturing gradient gel electrophoresis. Low oxidation-reduction potential (ORP) was shown to indicate the capacity for greater perchlorate removal in soil. However, in planted LOC soil systems, evidence suggests that perchlorate reduction may also be possible at higher bulk redox conditions than previously observed. Increased hydraulic retention time was shown to both lower bulk ORP and increase perchlorate removal. Radiolabeled perchlorate was used to find that in planted systems as much as 11.7% of the influent perchlorate mass was taken up into the tree and 82% of the perchlorate taken up was accumulated in the leaves. The plant contribution to total perchlorate removal in nonbioaugmented LOC soil was 39%, with the balance of the removal being attributed to microbial reduction. In bioaugmented soil the microbial contribution to perchlorate removal was increased. Just planting poplar trees decreased the diversity of perchlorate reducers in the soil. However, when LOC soil was both planted and bioaugmented, the diversity of perchlorate reducers was not decreased. In HOC soil, the presence of an indigenous population of microorganisms competed with perchlorate reducers. At the increased ORP observed in planted HOC soil, the non-perchlorate-reducing bacteria appear to outcompete the perchlorate reducers and perchlorate removal is decreased. Engineering implications of this research are that perchlorate remediation in HOC soil does not benefit from planting hybrid poplar trees but that remediation in LOC soil is stimulated by planting and bioaugmentation.
22

Removal of arsenic and perchlorate from water by the EC/EF process using a TMCS-modified tubular ceramic membrane

Yang, Shih-hong 30 June 2011 (has links)
Arsenic and perchlorate are two types of emerging contaminants commonly found in various water bodies worldwide. Therefore, the development of effective removal technologies has become an important issue today. To this end, the following research studies were conducted. First, trimethylchlorosilane (TMCS) was used for the surface modification of a laboratory-prepared outside-in tubular TiO2/Al2O3 composite membrane aiming at enhancing the filtration performance of the said membrane layer. Second, the TMCS-modified tubular ceramic membrane coupled with the simultaneous electrocoagulation/ electrofiltration (EC/EF) process was tested and evaluated their combined performance in the remediation of arsenic- and perchlorate-spiked waters and one actual As-contaminated groundwater. In this research, the results of a preliminary electrocoagulation study have indicated that aluminum outperformed iron as the anode material. Thus, aluminum was selected as the sacrificial anode for the EC/EF tests throughout this work. In the course of various EC/EF testing, the removal efficiencies of the target contaminant in the test water specimens were compared for the tubular TiO2/Al2O3 composite membranes with and without surface modification. Also evaluated included the permeate flux, unit mass of target contaminant removed, and relevant power consumption. Though surface modification might not yield a better removal efficiency of the concerned contaminant, it gave rise to a greater permeate flux resulting in a greater removed mass of the contaminant for each of the synthetic wastewaters. Meanwhile, lower power consumption was found as compared with the case of no surface modification. As for the actual As-contaminated groundwater, the optimal EC/EF conditions for the tubular composite membrane without surface modification could low the As concentration to meet the local irrigation water quality criteria.
23

Biofilm Reduction of Oxidized Contaminants

January 2012 (has links)
abstract: The overall goal of this dissertation is to advance understanding of biofilm reduction of oxidized contaminants in water and wastewater. Chapter 1 introduces the fundamentals of biological reduction of three oxidized contaminants (nitrate, perchlorate, and trichloriethene (TCE)) using two biofilm processes (hydrogen-based membrane biofilm reactors (MBfR) and packed-bed heterotrophic reactors (PBHR)), and it identifies the research objectives. Chapters 2 through 6 focus on nitrate removal using the MBfR and PBHR, while chapters 7 through 10 investigate simultaneous reduction of nitrate and another oxidized compound (perchlorate, sulfate, or TCE) in the MBfR. Chapter 11 summarizes the major findings of this research. Chapters 2 and 3 demonstrate nitrate removal in a groundwater and identify the maximum nitrate loadings using a pilot-scale MBfR and a pilot-scale PBHR, respectively. Chapter 4 compares the MBfR and the PBHR for denitrification of the same nitrate-contaminated groundwater. The comparison includes the maximum nitrate loading, the effluent water quality of the denitrification reactors, and the impact of post-treatment on water quality. Chapter 5 theoretically and experimentally demonstrates that the nitrate biomass-carrier surface loading, rather than the traditionally used empty bed contact time or nitrate volumetric loading, is the primary design parameter for heterotrophic denitrification. Chapter 6 constructs a pH-control model to predict pH, alkalinity, and precipitation potential in heterotrophic or hydrogen-based autotrophic denitrification reactors. Chapter 7 develops and uses steady-state permeation tests and a mathematical model to determine the hydrogen-permeation coefficients of three fibers commonly used in the MBfR. The coefficients are then used as inputs for the three models in Chapters 8-10. Chapter 8 develops a multispecies biofilm model for simultaneous reduction of nitrate and perchlorate in the MBfR. The model quantitatively and systematically explains how operating conditions affect nitrate and perchlorate reduction and biomass distribution via four mechanisms. Chapter 9 modifies the nitrate and perchlorate model into a nitrate and sulfate model and uses it to identify operating conditions corresponding to onset of sulfate reduction. Chapter 10 modifies the nitrate and perchlorate model into a nitrate and TCE model and uses it to investigate how operating conditions affect TCE reduction and accumulation of TCE reduction intermediates. / Dissertation/Thesis / Ph.D. Civil and Environmental Engineering 2012
24

Trade-offs in Utilizing of Zero-Valent Iron for Synergistic Biotic and Abiotic Reduction of Trichloroethene and Perchlorate in Soil and Groundwater

January 2017 (has links)
abstract: The advantages and challenges of combining zero-valent iron (ZVI) and microbial reduction of trichloroethene (TCE) and perchlorate (ClO4-) in contaminated soil and groundwater are not well understood. The objective of this work was to identify the benefits and limitations of simultaneous application of ZVI and bioaugmentation for detoxification of TCE and ClO4- using conditions relevant to a specific contaminated site. We studied conditions representing a ZVI-injection zone and a downstream zone influenced Fe (II) produced, for simultaneous ZVI and microbial reductive dechlorination applications using bench scale semi-batch microcosm experiments. 16.5 g L-1 ZVI effectively reduced TCE to ethene and ethane but ClO4- was barely reduced. Microbial reductive dechlorination was limited by both ZVI as well as Fe (II) derived from oxidation of ZVI. In the case of TCE, rapid abiotic TCE reduction made the TCE unavailable for the dechlorinating bacteria. In the case of perchlorate, ZVI inhibited the indigenous perchlorate-reducing bacteria present in the soil and groundwater. Further, H2 generated by ZVI reactions stimulated competing microbial processes like sulfate reduction and methanogenesis. In the microcosms representing the ZVI downstream zone (Fe (II) only), we detected accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) after 56 days. Some ethene also formed under these conditions. In the absence of ZVI or Fe (II), we detected complete TCE dechlorination to ethene and faster rates of ClO4- reduction. The results illustrate potential limitations of combining ZVI with microbial reduction of chlorinated compounds and show the potential that each technology has when applied separately. / Dissertation/Thesis / Masters Thesis Civil, Environmental and Sustainable Engineering 2017
25

Ecological Interactions Among Nitrate-, Perchlorate-, and Sulfate-Reducing Bacteria in Hydrogen-Fed Biofilm Reactors

January 2014 (has links)
abstract: Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized pollutants that act as electron acceptors, and they grow as a biofilm on the outer surface of gas-transfer membranes that deliver the electron donor (hydrogen gas, (H2). The overarching objective of my research was to achieve a comprehensive understanding of ecological interactions among key microbial members in the MBfR when treating polluted water with NO3− and ClO4− in the presence of SO42−. First, I characterized competition and co-existence between denitrifying bacteria (DB) and sulfate-reducing bacteria (SRB) when the loading of either the electron donor or electron acceptor was varied. Then, I assessed the microbial community structure of biofilms mostly populated by DB and SRB, linking structure with function based on the electron-donor bioavailability and electron-acceptor loading. Next, I introduced ClO4− as a second oxidized contaminant and discovered that SRB harm the performance of perchlorate-reducing bacteria (PRB) when the aim is complete ClO4− destruction from a highly contaminated groundwater. SRB competed too successfully for H2 and space in the biofilm, forcing the PRB to unfavorable zones in the biofilm. To better control SRB, I tested a two-stage MBfR for total ClO4− removal from a groundwater highly contaminated with ClO4−. I document successful remediation of ClO4− after controlling SO4 2− reduction by restricting electron-donor availability and increasing the acceptor loading to the second stage reactor. Finally, I evaluated the performance of a two-stage pilot MBfR treating water polluted with NO3− and ClO4−, and I provided a holistic understanding of the microbial community structure and diversity. In summary, the microbial community structure in the MBfR contributes to and can be used to explain/predict successful or failed water bioremediation. Based on this understanding, I developed means to manage the microbial community to achieve desired water-decontamination results. This research shows the benefits of looking "inside the box" for "improving the box". / Dissertation/Thesis / Ph.D. Sustainability 2014
26

Decomposition of ammonium perchlorate encapsulated nanoscale and micron-scale catalyst particles

Spencer A Fehlberg (8774588) 29 April 2020 (has links)
<p>Iron oxide is the most common catalyst in solid rocket propellant. We have previously demonstrated increased performance of propellant by encapsulating iron oxide particles within ammonium perchlorate (AP), but only nanoscale particles were used, and encapsulation was only accomplished in fine AP (~20 microns in diameter). In this study, we extended the size of particle inclusions to micron-scale within the AP particles as well the particle sizes of the AP-encapsulated catalyst particles (100s of microns) using fractional crystallization techniques with the AP-encapsulated particles as nucleation sites for precipitation. Here we report catalyst particle inclusions of micron-scale, as well as nanoscale, within AP and present characterization of this encapsulation. Encapsulating micron-sized particles and growing these composite particles could pave the way for numerous possible applications. A study of the thermal degradation of these AP-encapsulated particles compared against a standard mixture of iron oxide and AP showed that AP-encapsulated micron-scale catalyst particles exhibited similar behavior to AP-encapsulated nanoscale particles. Using computed tomography, we found that catalyst particles were dispersed throughout the interior of coarse AP-encapsulated micron-scale catalyst particles and decomposition was induced within these particles around catalyst-rich regions.</p>
27

INFLUENCE OF SODIUM SALTS ON THE SWELLING AND RHEOLOGY OF HYDROPHOBICALLY CROSSLINKED, NON-IONIC HYDROGELS DETERMINED BY QCM-D

Zhang, Mengxue 16 July 2019 (has links)
No description available.
28

Novel Nanostructures And Processes For Enhanced Catalysis Of Composite Solid Propellants

Draper, Robert 01 January 2013 (has links)
The purpose of this study is to examine the burning behaviour of composite solid propellants (CSP) in the presence of nanoscale, heterogenous catalysts. The study targets the decomposition of ammonium perchlorate (AP) as a key component in the burning profile of these propellants, and seeks to identify parameters of AP decomposition reaction that can be affected by catalytic additives. The decomposition behavior of AP was studied in the presence of titanium dioxide nanoparticles in varying configurations, surface conditions, dopants, morphology, and synthesis parameters with the AP crystals. The catalytic nanoparticles were found to enhance the decomposition rate of the ammonium perchlorate, and promote an accelerated burning rate of CSP propellants containing the additives. Furthermore, different configurations were shown to have varying degrees of effectiveness in promoting the decomposition behaviour. To study the effect of the catalyst’s configuration in the bulk propellant, controlled dispersion conditions of the nanoparticle catalysts were created and studied using differential scanning calorimetry, as well as model propellant strand burning. The catalysts were shown to promote the greatest enthalpy of reaction, as well as the highest burn rate, when the AP crystals were recrystalized around the nanoparticle additives. This is in contrast to the lowest enthalpy condition, which corresponded to catalysts being dispersed upon the AP crystal surface using bio-molecule templates. Additionally, a method of facile, visible light nanoparticle tracking was developed to study the effect of mixing and settling parameters on the nano-catalysts. To accomplish this, the titania nanoparticles were doped with fluorescent europium molecules to track the dispersion of the catalysts in the propellant binder. This method was shown to succesfully allow for dispersion and agglomeration monitoring without affecting the catalytic effect of the TiO2 nanoparticles.
29

HHARJONO_MASTERS_THESIS-6.pdf

Hanson-Lee Nava Harjono (14232875) 09 December 2022 (has links)
<p>In an AP-HTPB propellant microstructure, the local strain rate depends on the AP crystal size and the material, while the local temperature rate depends on the impact velocity, AP crystal size, and the material.  Larger AP crystals lead to higher local strain rates and higher local temperature rates, which means hot spots are more likely to occur in AP-HTPB propellants with more large AP crystals.</p>
30

Treatment of Microcontaminants in Drinking Water

Srinivasan, Rangesh 14 August 2009 (has links)
No description available.

Page generated in 0.0718 seconds