11 |
Model-based control of cardiac alternans on one dimensional tissueGarzon, Alejandro 24 August 2010 (has links)
When excitable cardiac tissue is electrically paced at a sufficiently
high rate, the duration of excitation can alternate from beat to beat
despite a constant stimulation period. This rhythm, known as alternans,
has been identified as an early stage in a sequence of increasingly complex
instabilities leading to the lethal arrhythmia ventricular fibrillation (VF).
This connection served as as a motivation for research into the control of
alternans as a strategy to prevent VF. Control methods that do not use a model
of the dynamics have been used for the suppression of alternans. However, these
methods possess limitations.
In this thesis we study theoretically model-based control techniques with the goal
of developing protocols that would overcome the shortcomings of non model-based
approaches. We consider one dimensional tissue in two different geometrical configurations:
a ring and a fiber with free ends (open fiber). We apply standard control methods for
linear time invariant systems to a stroboscopic map of the linearized dynamics around
the normal rhythm. We found that, in the ring geometry, model-based control is able to
suppress alternans faster and with lower current, thereby reducing the risk of tissue damage,
compared with non-model-based control. In the open fiber, model-based control is able to
suppress alternans for longer fibers and higher pacing frequencies in comparison
with non-model-based control. The methodology presented here can be extended to
two- and three-dimensional tissue, and could eventually lead to the suppression
of alternans on the entire ventricles.
|
12 |
Chaos, quasibound states, and classical periodic orbits in HOCIBarr, Alexander Michael 16 June 2011 (has links)
We study the classical nonlinear dynamics and the quantum vibrational energy eigenstates of the molecule HOCl. The classical vibrational dynamics, at energies below the HO+Cl dissociation energy, contains several saddle-center and period doubling bifurcations. The saddle-center bifurcations are shown to be due to a 2:1, and at higher energies a 3:1, nonlinear resonance between bend and stretch motions in various periodic orbits. The sequence of bifurcations takes the system from nearly integrable at low energies to almost completely chaotic at energies near the HO+Cl dissociation energy. At energies above dissociation we study the chaotic scattering of the Cl atom off the HO dimer. This scattering is governed by a homoclinic tangle formed by the stable and unstable manifolds of a parabolic periodic orbit at infinity. We construct the first three segments of the homoclinic tangle in phase space and use scattering functions to investigate its higher-order structure.
For the quantum system we use a discrete variable representation to efficiently calculate the Hamiltonian matrix. We find 365 even and 357 odd parity eigenstates with energies below the dissociation energy. By plotting the eigenstates in configuration space we show that almost every quantum eigenstate can be associated with one or more of the classical periodic orbits. The classical bifurcations that give rise to new periodic orbits are manifest quantum mechanically through the sudden appearance of new classes of eigenstates. Despite the high degree of chaos in the classical dynamics at energies near the dissociation energy most quantum eigenstates remain highly ordered with recognizable nodal patterns.
We use R-matrix theory together with a discrete variable representation to calculate quasibound states with energies above the dissociation energy. We find quasibound states with lifetimes ranging over 5 orders of magnitude. Using configuration space plots and Husimi distributions we show that the long-lived quasibound states are supported by unstable periodic orbits in the classical dynamics and medium-lived quasibound states are spread throughout the chaotic region of the classical phase space. Short-lived quasibound states show some similarity to unstable periodic orbits that stretch along the dissociation channel. / text
|
13 |
Periodic solutions to the n-body problemDyck, Joel A. 07 October 2015 (has links)
This thesis develops methods to identify periodic solutions to the n-body problem by representing gravitational orbits with Fourier series. To find periodic orbits, a minimization function was developed that compares the second derivative of the Fourier series with Newtonian gravitation acceleration and modifies the Fourier coefficients until the orbits match. Software was developed to minimize the function and identify the orbits using gradient descent and quadratic curves. A Newtonian gravitational simulator was developed to read the initial orbit data and numerically simulate the orbits with accurate motion integration, allowing for comparison to the Fourier series orbits and investigation of their stability. The orbits found with the programs correlate with orbits from literature, and a number remain stable when simulated. / February 2016
|
14 |
Singularidades e orbitas periodicas de sistemas descontinuos em R4 / Singularities and periodic orbits of discontinuous systems in R4Pereira, Weber Flavio 15 March 2006 (has links)
Orientadores: Marco Antonio Teixeira, Alain Guy Jacquemard / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-05T23:50:08Z (GMT). No. of bitstreams: 1
Pereira_WeberFlavio_D.pdf: 1832947 bytes, checksum: 58bb202e90151fc6830fbc0cd1cf430e (MD5)
Previous issue date: 2006 / Resumo: De acordo com a classificação feita por Anosov em 1959, obtemos diferentes tipos topológicos de sistemas "semi-lineares" descontínuos em JR4. Esta pré-classificação é feita através da apresentação das respectivas formas normais. Neste trabalho, consideramos perturbações não lineares de tais formas normais. As singularidades típicas são genericamente classificadas e o comportamento dos sistemas em torno destes pontos é analisado. Nosso foco é encontrar condições para a existência de uma família a l-parâmetro de órbitas periódicas terminando em singularidades no sentido do Teorema Centro de Lyapounov. As técnicas principais usadas são elementos do cálculo simbólico e da Teorida das Singularidades de Aplicações / Abstract: According to the classification made by Anosov in 1959, we derive several different topological types of semi-linear"discontinuous systems in R4. This pre-classification is done via pre-sentation of the respective normal forms. In this work, we consider non-linear perturbations of such normal forms. The typical singularities are generically classified and the behavior of the systems around these points is analyzed. Our focus is find conditions for the existence of 1-parameter family of periodic orbit terminating at the singularities in the sense of Lya- pounov Center Theorem. The main techniques used are elements of Symbolic Computation and Theory of Singularities of Mappings / Doutorado / Doutor em Matemática
|
15 |
Characterization of Lunar Access Relative to Cislunar OrbitsRolfe J Power IV (8081426) 04 December 2019
With the growth of human interest in the Lunar region, methods of enabling Lunar access including surface and Low Lunar Orbit (LLO) from periodic orbit in the Lunar region is becoming more important. The current investigation explores the Lunar access capabilities of these periodic orbits. Impact trajectories originating from the 9:2 Lunar Synodic Resonant (LSR) Near Rectilinear Halo Orbit (NRHO) are determined through explicit propagation and mapping of initial conditions formed by applying small maneuvers at locations across the orbit. These trajectories yielding desirable Lunar impact final conditions are then used to converge impacting transfers from the NRHO to Shackleton crater near the Lunar south pole. The stability of periodic orbits in the Lunar region is analyzed through application of a stability index and time constant. The Lunar access capabilities of the Lunar region periodic orbits found to be sufficiently unstable are then analyzed through impact and periapse maps. Using the impact data, candidate periodic orbits are incorporated in the the NRHO to Shackleton crater mission design to control mission geometry. Finally, the periapse map data is used to determine periodic orbits with desirable apse conditions that are then used to design NRHO to LLO transfer trajectories.
|
16 |
Minimizing methods and related topics for twist maps and the n-body problem / ツイスト写像とn体問題に関する最小化法及び関連する話題Kajihara, Yuika 23 January 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24328号 / 情博第812号 / 新制||情||137(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)准教授 柴山 允瑠, 教授 矢ヶ崎 一幸, 教授 山下 信雄, 教授 田口 智清 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
17 |
Caracterização da região de estabilidade de sistemas dinâmicos discretos não lineares / Characterization of the stability region of the nonlinear discrete dynamical systemsDias, Elaine Santos 30 September 2016 (has links)
O estudo da região de estabilidade é de extrema importância nas ciências, aplicações em engenharia e nos sistemas de controle não linear. Neste trabalho, uma caracterização completa da região de estabilidade e da fronteira da região de estabilidade de pontos fixos estáveis de uma classe ampla de sistemas dinâmicos discretos não lineares é desenvolvida. Os resultados deste trabalho estendem a caracterização da região de estabilidade já proposta na literatura para uma ampla classe de sistemas, modelados por difeomorfismos e que admitem a presença de órbitas periódicas e pontos fixos na fronteira da região de estabilidade. Caracterizações dinâmicas e topológicas são propostas para a fronteira da região de estabilidade. Além disso, são dadas condições necessárias e suficientes para que um ponto fixo ou órbita periódica pertença à fronteira da região de estabilidade. Exemplos numéricos, incluindo o modelo de uma rede neural simétrica com 2-neurônios, ilustram os resultados propostos neste trabalho. / The study of the stability region is very important in the sciences, engineering applications, and in nonlinear control systems. In this work, a complete characterization for both the stability region and the stability boundary of stable xed points of a nonlinear discrete dynamical systems is developed. The results of this work extend the characterization of the stability region already proposed in the literature for a larger class of systems, which are modeled by dieomorphisms and which admit the presence of periodic orbits and xed points on the stability boundary. Several dynamical and topological characterizations are proposed to the stability boundary. Moreover, several necessary and sucient conditions for xed points and periodic orbits to lie on the stability boundary are derived. Numerical examples, including the model of a symmetric neural network with 2-neurons, illustrate the results proposed in this work.
|
18 |
Estudo topológico de órbitas periódicas no circuito experimental de Chua / Topological studies of periodic orbits in the experimental Chua's circuitMaranhão, Dariel Mazzoni 19 May 2006 (has links)
Estudamos o comportamento dinâmico de séries temporais experimentais obtidas de um circuito de Chua quando dois parâmetros de controle, $Delta R_1$ e $Delta R_2$, são variados.Investigamos os comportamentos caótico e periódico, analisando as séries temporais ao redor e no interior de duas janelas periódicas presentes no espaço de parâmetros $(Delta R_1,Delta R_2)$ do circuito. Na vizinhança da janela de período três, analisamos como a dinâmica simbólica se altera quando construída em diferentes seções de Poincaré de um mesmo atrator, e investigamos a dimensão dos mapas de retorno, uni ou bidimensional, para diferentes atratores caóticos presentes nessa região do espaço de parâmetros. Ainda nessa vizinhança, empregamos técnicas de caracterização topológica para confirmar a existência de fibras caóticas, que são curvas de codimensão um no espaço de parâmetros onde as propriedades caóticas dos atratores são preservadas.Ao redor da janela de período quatro, investigamos a transição entre os três comportamentos caóticos para os quais construímos os respectivos moldes topológicos. Propusemos também um molde topológico para o regime caótico após a crise por fusão ocorrer no circuito. Finalizando, investigamos as bifurcações e a estrutura topológica das órbitas periódicas que formam as janelas de período três e de período quatro, construindo um espaço de parâmetros topológico, baseado em um mapa bi-modal, para descrever as duas janela periódicas. / We have studied the dynamical behavior of experimental time series obtained from a Chua's circuit by variation of two parameter control, $Delta R_1$ and $Delta R_2$. We investigated the chaotic and periodic behaviors of the circuit, analyzing temporal series around and inside of two periodic windows in the two-parameter space $(Delta R_1,Delta R_2)$. In the period-three window neighborhood, we analyzed how the symbolic dynamics changes when it is built by different Poincaré sections of an attractor, and we studied the dimension of return map, one- or two-dimensional, for many chaotic attractors in this region of the parameter space. In this neighborhood, we also applied topological techniques to confirm the existence of chaotic fibers: codimension one curves where the chaotic properties of the attractors remain unchanged in the two-parameter space.Around the period-four window, we investigated, by template analysis, the transition between three chaotic attractors found in the Chua's circuit. We proposed a template for chaotic regime of the circuit after merge-crisis. Finally, we investigated the bifurcations and topological structure of periodic orbits in period-three and period-four windows and also proposed a topological parameter space, based in a bimodal map model, that describe these two periodic windows.
|
19 |
Caracterização da região de estabilidade de sistemas dinâmicos discretos não lineares / Characterization of the stability region of the nonlinear discrete dynamical systemsElaine Santos Dias 30 September 2016 (has links)
O estudo da região de estabilidade é de extrema importância nas ciências, aplicações em engenharia e nos sistemas de controle não linear. Neste trabalho, uma caracterização completa da região de estabilidade e da fronteira da região de estabilidade de pontos fixos estáveis de uma classe ampla de sistemas dinâmicos discretos não lineares é desenvolvida. Os resultados deste trabalho estendem a caracterização da região de estabilidade já proposta na literatura para uma ampla classe de sistemas, modelados por difeomorfismos e que admitem a presença de órbitas periódicas e pontos fixos na fronteira da região de estabilidade. Caracterizações dinâmicas e topológicas são propostas para a fronteira da região de estabilidade. Além disso, são dadas condições necessárias e suficientes para que um ponto fixo ou órbita periódica pertença à fronteira da região de estabilidade. Exemplos numéricos, incluindo o modelo de uma rede neural simétrica com 2-neurônios, ilustram os resultados propostos neste trabalho. / The study of the stability region is very important in the sciences, engineering applications, and in nonlinear control systems. In this work, a complete characterization for both the stability region and the stability boundary of stable xed points of a nonlinear discrete dynamical systems is developed. The results of this work extend the characterization of the stability region already proposed in the literature for a larger class of systems, which are modeled by dieomorphisms and which admit the presence of periodic orbits and xed points on the stability boundary. Several dynamical and topological characterizations are proposed to the stability boundary. Moreover, several necessary and sucient conditions for xed points and periodic orbits to lie on the stability boundary are derived. Numerical examples, including the model of a symmetric neural network with 2-neurons, illustrate the results proposed in this work.
|
20 |
Dynamique cohérente de mouvements turbulents à grande échelle / Coherent dynamics of large scale turbulent motionsRawat, Subhandu 10 December 2014 (has links)
Mon travail de thèse a porté sur la compréhension «systèmes dynamiques de la dynamique à grande échelle dans l’écoulement pleinement développé de cisaillement turbulent. Dans le plan écoulement de Couette, simulation des grandes échelles (LES) est utilisée pour modéliser petits mouvements d’échelle et de ne résoudre mouvements à grande échelle afin de calculer non linéaire ondes progressives (SNT) et orbites périodiques relatives (RPO). Artificiel sur-amortissement a été utilisé pour étancher une gamme croissante de petite échelle motions et prouvent que les motions grande échelle sont auto-entretenue. Les solutions d’onde inférieure branche itinérantes qui se trouvent sur le bassin laminaire turbulent limite sont obtenues pour ces simulation sur-amortie et continue encore dans l’espace de paramètre à des solutions de branche supérieure. Cette approche ne aurait pas été possible si, comme supposé dans certains enquêtes précédentes, les mouvements à grande échelle dans le mur bornées flux de cisaillement sont forcée par un mécanisme fondé sur l’existence de structures actives à plus petite échelle. En flux Poseuille, orbites périodiques relatives à décalage réflexion symétrie sur la limite du bassin laminaire turbulent sont calculés en utilisant DNS. Nous montrons que le RPO trouvé sont connectés à la paire de voyager vague (TW) solution via bifurcation mondiale (noeud-col-période infinie bifurcation). La branche inférieure de cette solution TW évoluer dans un état de l’envergure localisée lorsque le domaine de l’envergure est augmentée. La solution de branche supérieure développe plusieurs stries avec un espacement de l’envergure compatible avec des mouvements à grande échelle en régime turbulent. / My thesis work focused on ‘dynamical systems’ understanding of the large-scale dynamics in fully developed turbulent shear flow. In plane Couette flow, large-eddy simulation (L.E.S) is used to model small scale motions and to only resolve large-scale motions in order to compute nonlinear traveling waves (NTW) and relative periodic orbits (RPO). Artificial over-damping has been used to quench an increasing range of small-scale motions and prove that the motions in large-scale are self-sustained. The lower-branch traveling wave solutions that lie on laminar-turbulent basin boundary are obtained for these over-damped simulation and further continued in parameter space to upper branch solutions. This approach would not have been possible if, as conjectured in some previous investigations, large-scale motions in wall bounded shear flows are forced by mechanism based on the existence of active structures at smaller scales. In Poseuille flow, relative periodic orbits with shift-reflection symmetry on the laminar-turbulent basin boundary are computed using DNS. We show that the found RPO are connected to the pair of traveling wave (TW) solution via global bifurcation (saddle-node-infinite period bifurcation). The lower branch of this TW solution evolve into a spanwise localized state when the spanwise domain is increased. The upper branch solution develops multiple streaks with spanwise spacing consistent with large-scale motions in turbulent regime.
|
Page generated in 0.0434 seconds