• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 733
  • 339
  • 175
  • 132
  • 31
  • 20
  • 20
  • 20
  • 20
  • 20
  • 19
  • 14
  • 10
  • 9
  • 9
  • Tagged with
  • 1769
  • 297
  • 216
  • 172
  • 148
  • 145
  • 125
  • 114
  • 102
  • 93
  • 93
  • 93
  • 91
  • 87
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Optimal design of electrically-small loop antenna including surrounding medium effects

Bolton, Timothy 27 May 2016 (has links)
Electrically-small loop antennas are a complex topic, with many design concepts to consider, including: effective magnetic core permeability, antenna impedance, antenna radiation, surrounding medium effects, and optimization approaches. There is a plethora of literature available covering these subjects but many conflict, compete, or are overall lacking; this thesis seeks to compare and analyze literature then validate with measurements, allowing optimal design.
562

Comparative analysis of predictive equations for transfer processes in different porous structures

Woudberg, Sonia 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Research on transfer processes in various types of porous media has become important for the optimization of high technology engineering devices and processes. In this study the micro-structural parameters of different types of porous media, namely granular media, foamlike media and fibre beds, are characterized and quantified. Existing analytical modelling procedures for the three different types of porous media have been unified and refined to improve their predictive capabilities. Deterministic equations are proposed for predicting the streamwise pressure gradient, permeability and inertial coefficient of each type of porous medium. The equations are applicable over the entire porosity range and steady laminar flow regime and well suited as drag models in numerical computations. It is shown that the improved granular model can be regarded as qualitative and quantitative proof of the extensively used semi-empirical Ergun equation. The proposed model is used to provide physical meaning to the empirical coefficients. An Ergun-type equation is also proposed for foamlike media by remodelling the interstitial geometric configuration and accompanying flow conditions. The range of applicability of the existing foam model has been extended by incorporating the effect of developing flow in the pressure drop prediction. An equation is proposed in which the variation in the cross-sectional shape of the fibres can be incorporated into the interstitial form drag coefficient used in the foam model. This serves as an improvement on the constant value previously used. The existing foam model is also adapted to account for anisotropy resulting from compression. Two case studies are considered, namely compression of a non-woven glass fibre filter and compression of a soft polyester fibre material. The significant effect of compression on permeability is illustrated. In each case study the permeability values range over more than an order of magnitude for the narrow porosity ranges involved. The pressure drop prediction of the foam model is furthermore adapted to account for the combined effects of compression and developing flow. The newly proposed model diminishes the significant over-prediction of the existing foam model. An equation is furthermore proposed for predicting the permeability of Fontainebleau sandstones in which the effect of blocked throats is accounted for. Lastly, equations are proposed for predicting diffusivity ratios of unconsolidated arrays of squares and cubes. The prediction of the diffusivity ratio proposed in the present study, as opposed to model predictions from the literature, takes into account diffusion that may take place in stagnant fluid volumes. It is shown that a specific weighted average model proposed in the literature is not adequate to predict the diffusivity ratio of fully staggered arrays of squares, since it is shown not to be applicable to rectangular unit cells. Instead a new weighted average model is proposed which is applicable over the entire porosity range and for both staggered and non-staggered arrays of solid squares and cubes. The proposed weighted average model provides satisfactory agreement with experimental data from the literature and numerical data generated in the present study. / AFRIKAANSE OPSOMMING: Navorsing op oordragsprosesse in verskeie tipes poreuse media het belangrik geword vir die optimisering van ho¨e-tegnologie ingenieurstoestelle- en prosesse. In hierdie studie word die mikro-struktuur parameters van verskillende tipes poreuse media, naamklik korrelagtige media, sponsatige media en veselbeddens gekarakteriseer en gekwantifiseer. Bestaande analitiese modelleringsprosedures vir die drie verskillende tipes poreuse media is verenig en verfyn om die voorspelbare bekwaamheid daarvan te verbeter. Deterministiese vergelykings is voorgestel vir die voorspelling van die stroomsgewyse gradi¨ent, permeabiliteit en inersi¨ele ko¨effisi¨ent van elke tipe poreuse medium. Die vergelykings is geldig oor die hele porositeitsgrens en gestadigde laminˆere vloeigrens en goed geskik as weerstandsmodelle in numeriese berekeninge. Dit is aangetoon dat die verbeterde korrelmodel beskou kan word as kwalitatiewe en kwantitatiewe bewys van die ekstensiewe gebruikte semi-empiriese Ergun vergelyking. Die voorgestelde model is gebruik om fisiese betekenis aan die empiriese ko¨effisi¨ente te gee. ’n Ergun-tipe vergelyking is ook voorgestel vir sponsagtige media deur hermodellering van die tussenruimtelike geometriese konfigurasie en gepaardgaande vloeikondisies. Die grense van toepaslikheid van die bestaande sponsmodel is uitgebrei deur die inkorporering van die effek van ontwikkelende vloei in die voorspelling van die drukval. ’n Vergelyking is voorgestel waarin die variasie in die deursnit vorm van die vesels ingesluit is in die sponsmodel. Dit dien as verbetering op die konstante waarde wat voorheen gebruik is. Die bestaande sponsmodel is ook aangepas om voorsiening te maak vir anisotropie as gevolg van kompressie. Twee gevallestudies is oorweeg, naamlik kompressie van ’n nie-geweefde glasvesel filter en kompressie van ’n sagte polyester veselmateriaal. Die beduidende effek van kompressie op permeabiliteit is aangetoon. In elke gevallestudie strek die permeabiliteit waardes oor meer as ’n grootte orde vir die skrale porositeitgrense betrokke. Die drukvalvoorspelling van die sponsmodel is verder aangepas om voorsiening te maak vir die gekombineerde effekte van kompressie en ontwikkelende vloei. Die nuwe voorgestelde model verminder die beduidende oor-voorspelling van die bestaande sponsmodel. ’n Vergelyking is verder voorgestel vir die voorspelling van die permeabiliteit van Fontainebleau sandsteen waarin die effek van geblokte porie¨e in ag geneem is. Laastens is vergelykings voorgestel vir die voorspelling van die diffusiwiteitsverhoudings van nie-konsoliderende rangskikkings van vierkante en kubusse. Die diffusiwiteitsverhouding voorspel in die huidige studie, teenoor modelvoorspellings vanaf die literatuur, neem diffusie in ag wat plaasvind in die stagnante vloeistofvolumes. Dit is aangetoon dat ’n geweegde gemiddelde model, voorgestel in die literatuur, nie in staat is om die diffusiwiteitsverhouding van ten volle verspringende rangskikkings van vierkante te voorspel nie, aangesien dit nie toepaslik is vir reghoekige eenheidselle nie. ’n Nuwe geweegde model is in plaas daarvan voorgestel wat toepaslik is oor die hele porositeitsgrens en vir beide verspringende en nieverspringende rangskikkings van soliede vierkante en kubusse. Die voorgestelde geweegde gemiddelde model bied bevredigende ooreenstemming met eksperimentele data uit die literatuur en numeriese data gegenereer in die huidige studie.
563

LIPID-BASED PACLITAXEL AND DOXORUBICIN NANOPARTICLES TO OVERCOME P-GP-MEDIATED DRUG RESISTANCE IN SOLID TUMORS

Dong, Xiaowei 01 January 2009 (has links)
Multidrug resistance (MDR) is a major obstacle limiting chemotherapeutic efficacy. The purpose of these studies was to investigate the potential application of injectable paclitaxel (PX) and doxorubicin (Dox)-loaded nanoparticles (NPs) engineered from oil-in-water microemulsion precursors for overcoming P-glycoprotein (P-gp)- mediated drug resistance in solid tumors. An in-vitro study was performed to test whether the oil (stearyl alcohol and cetyl alcohol) used to make lipid nanoparticles could be metabolized. The results showed that the concentrations of the fatty alcohols within nanoparticles, which were quantitatively determined over time by gas chromatography, decreased to only 10-20% of the initial concentration after 15-24 h of incubation with horse liver dehydrogenase (HLADH) and NAD+ at 37ºC. Moreover, the surfactant Brij 78 (polyoxyethylene 20-sterayl ether) in the nanoparticles influenced the activity of the enzyme. Novel Cremophor EL-free paclitaxel-loaded nanoparticles were developed using experimental design combining Taguchi array and sequential simplex optimization. The resulting PX G78 and PX BTM NPs were stable at 4ºC over five months and in PBS at 37ºC over 102 h. Release of PX from PX NPs was slow and sustained without initial burst release. Interestingly, PX BTM NPs could be lyophilized without cryoprotectants and without changing any physiochemical properties and bioactivities. Cytotoxicity studies in breast cancer MDA-MB-231 cells showed that PX NPs have similar anti-cancer activities compared to Taxol. Optimized Dox-loaded NPs were prepared using an ion-pair agent, sodium tetradecyl sulfate (STS), to mask Dox charge and to enhance its entrapment in NPs. In-vitro cytotoxicity studies were carried out in both sensitive and resistant human cancer cells treated with PX and Dox-loaded NPs. All of drug-loaded NPs decreased IC50 values by 6-13-fold in resistant cells compared to free drugs. A series of in-vitro assays were used to understand the underlying mechanisms. The results, in part, showed that the NPs inhibited P-gp and transiently depleted ATP, leading to enhanced uptake and prolonged retention of the drugs in P-gp-overexpressing cancer cells. Finally, in-vivo anti-cancer efficacy studies were performed using pegylated PX BTM NPs after intravenous (i.v.) injection and showed marked anti-cancer efficacy in nude mice bearing resistant NCI/ADR-RES tumors versus all control groups. These results suggest that NPs may be used to both target drug and biological mechanisms to overcome MDR.
564

ROLE OF CYCLOPHILIN D IN SECONDARY SPINAL CORD AND BRAIN INJURY

Clark, Jordan Mills 01 January 2009 (has links)
In the hours and days following acute CNS injury, a secondary wave of events is initiated that exacerbate spinal tissue damage and neuronal cell death. A potential mechanism driving these secondary events is opening of the mitochondrial permeability transition pore (mPTP) and subsequent release of several cell death proteins. Previous studies have shown that inhibition of cyclophilin D(CypD), the key regulating component in mPTP opening, was protective against insults that induce necrotic cell death. We therefore hypothesized that CypD-null mice would show improved functional and pathological outcomes following spinal cord injury (SCI) and traumatic brain injury (TBI). Moderate and severe spinal contusion was produced in wild-type (WT) and CypD-null mice at the T-10 level using the Infinite Horizon impactor. Changes in locomotor function were evaluated using the Basso Mouse Scale (BMS) at 3 days post-injury followed by weekly testing for 4 weeks. Histological assessment of tissue sparing and lesion volume was performed 4 weeks post SCI. Calpain activity, measured by calpain-mediated spectrin degradation, was assessed in moderate injury only by western blot 24 hours post SCI. Results showed that following moderate SCI, CypD-null mice had no significant improvement in locomotor recovery or tissue sparing compared to wild-type mice. Following severe SCI, CypD-null mice showed significantly lower locomotor recovery and decreased tissue sparing compared to WT mice. Calpain-mediated spectrin degradation was not significantly reduced in CypD-null mice compared to WT mice 24h post moderate SCI. The lack of protective effects in CypD-null mice suggests that more dominant mechanisms are involved in the pathology of SCI. In addition, CypD may have a pro survival role that is dependent on the severity of the spinal cord injury.
565

EXPERIMENTAL AND MOLECULAR DYNAMICS SIMULATION STUDIES OF PARTITIONING AND TRANSPORT ACROSS LIPID BILAYER MEMBRANES

Tejwani, Ravindra Wadhumal 01 January 2009 (has links)
Most drugs undergo passive transport during absorption and distribution in the body. It is desirable to predict passive permeation of future drug candidates in order to increase the productivity of the drug discovery process. Unlike drug-receptor interactions, there is no receptor map for passive permeability because the process of transport across the lipid bilayer involves multiple mechanisms. This work intends to increase the understanding of permeation of drug-like molecules through lipid bilayers. Drug molecules in solution typically form various species due to ionization, complexation, etc. Therefore, species specific properties must be obtained to bridge the experiment and simulations. Due to the volume contrast between intra- and extravesicular compartments of liposomes, minor perturbations in ionic and binding equilibria become significant contributors to transport rates. Using tyramine as a model amine, quantitative numerical models were developed to determine intrinsic permeability coefficients. The microscopic ionization and binding constants needed for this were independently measured. The partition coefficient in 1,9-decadiene was measured for a series of compounds as a quantitative surrogate for the partitioning into the hydrocarbon region of the bilayer. These studies uncovered an apparent long-range interaction between the two polar substituents that caused deviations in the microscopic pKa values and partition coefficient of tyramine from the expected values. Additionally the partition coefficients in the preferred binding region of the bilayer were also measured by equilibrium uptake into liposomes. All-atom molecular dynamics simulations of lipid bilayers containing tyramine, 4- ethylphenol, or phenylethylamine provided free energies of transfer of these solutes from water to various locations on the transport path. The experimentally measured partition coefficients were consistent with the free energy profiles in showing the barrier in the hydrocarbon region and preferred binding region near the interface. The substituent contributions to these free energies were also quantitatively consistent between the experiments and simulations. Specific interactions between solutes and the bilayer suggest that amphiphiles are likely to show preferred binding in the head group region and that the most of hydrogen bonds involving solutes located inside the bilayer are with water molecules. Solute re-orientation inside the bilayer lowers the partitioning barrier by allowing favorable interactions.
566

Improved estimation of pore connectivity and permeability in deepwater carbonates with the construction of multi-layer static and dynamic petrophysical models

Ferreira, Elton Luiz Diniz 09 October 2014 (has links)
A new method is presented here for petrophysical interpretation of heterogeneous carbonates using well logs and core data. Developing this new method was necessary because conventional evaluation methods tend to yield inaccurate predictions of pore connectivity and permeability in the studied field. Difficulties in the petrophysical evaluation of this field are related to shoulder-bed effects, presence of non-connected porosity, rock layers that are thinner than the vertical resolution of well-logging tools, and the effect of oil-base mud (OBM) invasion in the measurements. These problems give rise to uncommon measurements and rock properties, such as: (a) reservoir units contained within thinly bedded and laminated sequences, (b) very high apparent resistivity readings in the oil-bearing zone, (c) separation of apparent resistivity logs with different depths of investigation, (d) complex unimodal and bimodal transverse relaxation distributions of nuclear magnetic resonance (NMR) measurements, (e) reservoir units having total porosity of 0.02 to 0.26 and permeability between 0.001mD to 4.2D, (f) significant differences between total and sonic porosity, and (g) low and constant gamma-ray values. The interpretation method introduced in this thesis is based on the detection of layer boundaries and rock types from high-resolution well logs and on the estimation of layer-by-layer properties using numerical simulation of resistivity, nuclear, and NMR logs. Layer properties were iteratively adjusted until the available well logs were reproduced by numerical simulations. This method honors the reservoir geology and physics of the measurements while adjusting the layer properties; it reduces shoulder-bed effects on well logs, especially across thinly bedded and laminated sequences, thereby yielding improved estimates of interconnected porosity and permeability in rocks that have null mobile water saturation and that were invaded with OBM. Additionally, dynamic simulations of OBM invasion in free-water depth intervals were necessary to estimate permeability. It is found that NMR transverse relaxation measurements are effective for determining rock and fluid properties but are unreliable in the accurate calculation of porosity and permeability in thinly bedded and highly laminated depth sections. In addition, this thesis shows that low resistivity values are associated with the presence of microporosity, and high resistivity values are associated with the presence of interconnected and vuggy porosity. In some layers, a fraction of the vuggy porosity is associated with isolated pores, which does not contribute to fluid flow. An integrated evaluation using multiple measurements, including sonic logs, is therefore necessary to detect isolated porosity. After the correction and simulation, results show, on average, a 34% improvement between estimated and core-measured permeability. Closer agreement was not possible because of limitations in tool resolution and difficulty in obtaining a precise depth match between core and well-log measurements. / text
567

A High Frequency Transformer Winding Model for FRA Applications

Tavakoli, Hanif January 2009 (has links)
<p>Frequency response analysis (FRA) is a method which is used to detect mechanical faults in transformers. The FRA response of a transformer is determined by its geometry and material properties, and it can be considered as the transformer’s fingerprint. If there are any mechanical changes in the transformer, for example if the windings are moved or distorted, its fingerprint will also be changed so, theoretically, mechanical changes in the transformer can be detected with FRA.</p><p>The purpose of this thesis is to partly create a simple model for the ferromagnetic material in the transformer core, and partly to investigate the high frequency part of the FRA response of the transformer winding. To be able to realize these goals, two different models are developed separately from each other. The first one is a time- and frequency domain complex permeability model for the ferromagnetic core material, and the second one is a time- and frequency domain winding model based on lumped circuits, in which the discretization is made finer and finer in three steps. Capacitances and inductances in the circuit are calculated with use of analytical expressions derived from approximated geometrical parameters.</p><p>The developed core material model and winding model are then implemented in MATLAB separately, using state space analysis for the winding model, to simulate the time- and frequency response.</p><p>The simulations are then compared to measurements to verify the correctness of the models. Measurements were performed on a magnetic material and on a winding, and were compared with obtained results from the models. It was found that the model developed for the core material predicts the behavior of the magnetic field for frequencies higher than 100 Hz, and that the model for the winding predicts the FRA response of the winding for frequencies up to 20 MHz.</p>
568

Analysis of constant head borehole infiltration tests in the vadose zone

Stephens, Daniel Bruce. January 1979 (has links)
Many environmental studies of water transport through the vadose zone require a field determination of saturated hydraulic conductivity. The purpose of this dissertation is to analyze the reliability of existing methods to determine saturated hydraulic conductivity, K(s), in the vadose zone from constant head borehole infiltration test data. In methods developed by the U. S. Bureau of Reclamation [USBRI, and in lesser known ones, K(s) is computed knowing the height of water in the borehole, length open to the formation, borehole radius, distance above the water table, and steady flow rate. The mathematical formulas on which these methods rest are derived on the basis of numerous simplifying assumptions. The free surface approach is used as the conceptual model of flow from a borehole. Results of numerical simulations are used to compare with the analytical solutions. Simulations with a steady-state finite element computer program, FREESURF, show that the Nasberg-Terletskata solution most closely approximates flow from a borehole with the free surface approach. The influence of capillarity is simulated for saturated-unsaturated porous media in four soils using a finite element computer program, FLUMP, and an integrated finite difference program, TRUST. Contrary to what one finds with the free surface approach, only a small portion of the flow field near the borehole is saturated at steady-state and the cross sectional area normal to the flow path increases with depth below the borehole. For deep water table conditions in fine textured soils, values of K(s) computed using the USBR open-hole equations may be more than 160% greater than the true values; and in coarse sands the USBR solutions may under-estimate the actual value by more than 35%. Mostly because of the influence of unsaturated soil properties there is no unique relationship between K(s), borehole conditions, and steady flow rate, as implied in the analytical solutions. Steady-state simulations demonstrate that existing solutions for borehole infiltration tests in anisotropic or nonuniform soils may also lead to significant errors. Time dependent simulations show that the time to reach a steady flow rate may be more than several days in very dry, low-permeable soils. The time to reach a steady flow rate can be significantly reduced by decreasing the open area between the borehole and formation while increasing the height of water in the borehole. Two methods are proposed to minimize the time, water volume requirements, and cost of conducting constant head borehole infiltration tests. Simulations show that a plot of the inverse of flow rate versus logarithm of time departs from a straight line after about 80% of the steady rate is achieved for various soil and borehole conditions; the steady rate is approximately 0.8 times the rate at the break in slope. In the second method flow rate is plotted versus the inverse of the square root of time and the steady rate is estimated within about 10% by linear extrapolation of early time measurements. USBR field data generally support this linear relationship. Two empirical equations are proposed to compute K(s). The first is applicable for a range of borehole conditions and approximately accounts for capillary effects with a single parameter. The second applies if the height of water in the borehole is I meter, and is based on the time to reach 80% of the steady rate and saturation deficit of the field soil.
569

Image-Based Numerical Simulation of Stokes Flow in Porous Media

Erdmann, Robert Gerald January 2006 (has links)
Numerical models for the simulation of longitudinal and transverse Stokes flow in cylindrical periodic porous media are presented. The models, which are based on a finite-volume formulation in primitive variables, utilize digital image representations of the geometries to simulate, making them particularly well-suited for the rapid automated analysis of creeping flow in porous media with complex morphologies. Complete details of the model formulations are given, including extensive treatment of the pressure boundary conditions at the solid-liquid interface needed to guarantee convergence with all possible geometries. The convergence behavior of both models is tested, and the models are shown to be second-order accurate.The models are used to simulate flow over the whole range of volume fractions of liquid in several regular geometries. The longitudinal model is used to simulate flow in square arrays of circular and square ducts, and both models are used to simulate flow in square and hexagonal arrays of circular cylinders and square arrays of square cylinders rotated by varying amounts. For each of the geometries, accurate empirical expressions for the Darcy permeability as a function of volume fraction solid are presented. Where applicable, model predictions of permeability are compared to existing analytical results.Subsequently, the models are used to simulate Stokes flow in random domains over a wide range of fractions liquid. The sequential random packing algorithm is used to generate 1,000 random packings of circular cylinders at each of 14 fractions of liquid, and longitudinal and transverse flow simulations are performed for each geometry. Histograms and summary statistics are computed for the permeability for each fraction liquid, and empirical expressions for mean permeability as a function of fraction liquid are given. The autocorrelation structure of the geometry and of the fluid velocity is analyzed, and an analysis of the scaling of longitudinal permeability variance is presented. In transverse flow at high packing densities, it is found that lightning-like patterns emerge in the fluid velocity. It is also found that the details of flows in such geometries are strongly sensitive to the placement of individual solid obstacles.
570

Cryobiology of Cell and Tissue Cryopreservation: Experimental and Theoretical Analysis

Unhale, Sanket Anil January 2011 (has links)
Preservation of tissue structure, morphology and biomarkers is of utmost importance for pathological examination of biopsy specimens for diagnostic and therapeutic purposes. However current methods employed to evade tissue degradation and preserve biomarkers have several shortcomings that include irreproducibility, morphological artifacts and altered biomarker antigenicity. These artifacts may affect the analysis and subsequent diagnosis of the tissue pathology. This creates need for developing improved preservation methods that reproducibly maintain tissue morphology and biomarker antigenicity and are simple, rapid and inexpensive. Experiments conducted for testing the hypothesis that cryopreservation procedures yield high quality morphology and antigenicity showed that cryopreservation maintains tissue structure, morphology and antigenicity at equivalent or better levels compared to standard freezing techniques. In order to understand the mechanisms of osmotic transport in cellular systems upon exposure to multi-component solutions that are prevalent in virtification protocols, experimental studies were undertaken using microfluidics for single cell manipulation. The experimental data yielded permeability parameters in binary and ternary solutions for MC3T3-E1 murine osteoblasts for the first time. The hydraulic conductivity (L(p)) decreased with increasing concentrations but the solute permeability either increased or decreased with increasing solution concentration. The changes in hydraulic conductivity were consistent with previously published trends and conform to a functional relationship in the form of Arrhenius type relationship between L(p) and solution concentration. Further a theoretical model was developed from principles of linear irreversible thermodynamics to simulate multi--‐‑component mass transport across membrane. The model was successfully validated by comparison with experimental data for murine osteoblasts and showed good agreement between the numerical predictions and experimental observations. The modeling approach can be used to investigate the transport mechanisms, which show that in multicomponent osmotic transport response, the dynamics is dictated by slower moving solute.

Page generated in 0.0801 seconds