• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 15
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 15
  • 13
  • 11
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemical Composition and Nutrient Profile of the Low Molecular Weight Fraction of Bovine Colostrum

Christiansen, Scott 15 June 2010 (has links)
Bovine colostrum collected within 12h of parturition was de-fatted, de-caseinated, and ultrafiltered (UF) using a 5 kDa cut-off membrane; the resulting UF permeate was freeze dried to create a powder with possible use as a functional food ingredient. Samples representative of five lots of this powdered “colostrum low molecular weight fraction” (CLMWF) were analyzed for chemical composition and nutrient profile. The average contents of fat, moisture, and ash were 0.6%, 1.7%, and 8.3% w/w, respectively. Carbohydrate analysis showed an average of 58.2% w/w lactose monohydrate with no monosaccharides, other disaccharides, trioses, or tetroses detected. The total nitrogen content averaged 1.13% w/w, with 74% of this in the non-protein nitrogen fraction, producing a true protein content of 1.9% w/w. A significant mass fraction of the material (~29% w/w) remains to be characterized. The CLMWF powders were found to contain significant quantities of the minerals calcium (average 870 mg/100g), magnesium, (311 mg/100g), phosphorus (1473 mg/100g), potassium (1705 mg/100g) and sodium (690 mg/100g), the nutrients taurine (average 26.5 mg/100g), L-carnitine (40.5 mg/100g), thiamine (648 mcg/100g) and riboflavin (6991 mcg/100g), and the nucleos(t)ides uridine (55.2 mg/100g) and 5’UMP (18.8 mg/100g), cytidine (3.33 mg/100g) and 5’CMP (4.83 mg/100g) and guanosine (3.45 mg/100g) and 5’GMP (3.57 mg/100g).
2

Characterisation of Prebiotic Compounds from Plant Sources and Food Industry Wastes: Inulin from Jerusalem Artichoke and Lactulose from Milk Concentration Permeate

Paseephol, Tatdao, s3102901@student.rmit.edu.au January 2008 (has links)
The development of processes for the preparation of prebiotic compounds, namely inulin from tubers of Jerusalem artichoke (JA-Helianthus tuberosus L.), and lactulose from milk concentration permeate (MCP) was examined. Inulin was extracted from the whole JA tubers using hydrothermal extraction process, followed by clarification and concentration. The concentrate was fractionated using two different procedures i.e. ethanol fractionation and cold precipitation (+4 and/or -24C) into high- and low-molecular-weight components. The most satisfactory method was cold fractionation wherein the insoluble heavier inulin fractions were found to settle to the bottom and were separated and spray-dried to obtain inulin powder. Lactose in MCP was isomerised into lactulose using carbonate-based catalysts (oyster shell and egg shell powders) followed by clarification and concentration. The high-performance liquid chromatography with refractive index detector (HPLC-RID) chr omatograms and changes in pH and colour values confirmed the conversion of lactose into lactulose and decomposition of lactulose into by-products. The results obtained showed the suitability of oyster shell powder for lactose isomerisation in lieu of egg shell powder. For preparing lactulose-enriched MCP with acceptable lactulose yield of 22%, the optimum reaction conditions were found to be catalyst loading of 12 mg per mL of MCP and isomerisation time of 120 min at 96C. The resulting products i.e. JAI concentrate and powder and lactulose-enriched MCP syrup (40B) were tested for their prebiotic power in media broth and in fermented milk models. Prebiotic properties of these compounds were observed as supplementation levels increased from 0-2% to 3-4%. Based on the growth and acidification abilities of the probiotic strains tested, the combination of Lactobacillus casei LC-01 with JAI, and Lactobacillus acidophilus LA-5 with lactulose-enriched MCP syrup were found to be the best for development of synbiotic yoghurt. The prebiotic effect of JAIP was then compared with the two commercial chicory inulin products (Raftiline GR and Raftilose P95). Probiotic yoghurts supplemented with 4% inulin powders were prepared from reconstituted skim milk using mixed cultures of Lactobacillus casei LC-01, Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (1:0.5:0.5, w/w). The survival and acidifying activity of probiotic and lactic acid cultures were investiga ted during the shelf life of 28 days at 4C. Incorporation of JAIP and chicory inulins resulted in a significant improvement in viability of LC-01 compared with non-supplemented yoghurt, maintaining more than 107 CFU g-1 throughout storage time. Additionally, the suitability of JAIP as fat replacer was determined in a set of fat-free yoghurt in comparison to three commercial chicory inulin products. Results of large deformation tests revealed that the firmness of JAIP-supplemented yoghurt was reduced to a similar level as the full-fat control yoghurt. However, small deformation results showed that the JAIP could not fully mimic milk fat to the same extent as Raftiline HP with an average DP of 23. The rheological effects of JAIP addition were comparable to those of short-chain (Raftilose P95 with an average DP of 4) and medium-chain inulins (Raftiline® GR with an average DP of 12).
3

Investigating the fouling behavior of reverse osmosis membranes under different operating conditions

Niriella, Dhananjaya P 01 June 2006 (has links)
This dissertation describes the investigation of the fouling of a reverse osmosis membrane under different operating conditions. A mass transfer model to predict the permeate flux decline is defined. These studies used kaolin clay and bentonite clay as the fouling particles. As the membranes, thin film Low fouling Composite 1 polyamide reverse osmosis flat sheet membranes were used. Baseline experiments using only kaolin in D.I. water were conducted. At an operating pressure of approximately 1,380 kPa, no flux decline was observed. These results established the effects of a membrane-particle interaction. For the fouling experiments with kaolin clay, experiments show a linear relationship between the mass of the deposited foulant layer and total permeate flux decline. The increased concentration of scale forming salts such as calcium chloride and sodium carbonate combined with clay particles has been found to increase flux decline. It also leads to the formation of a less porous cake layer on the membrane surface, which may be due to the particle surface charge. The increase in transmembrane pressure leads to the formation of a well compacted, less porous, cake layer on the membrane surface. The reduced porosity results in the deterioration of the permeate quality, which is a direct result of reduced back diffusion of the salt solution.A fouling model that combines a resistance-in-series model and a simplified-mass-transport relationship were used to predict the transient stage permeate flux of a reverse osmosis membrane. This model contains a constant which is a function of the operating condition and the ionic species in the feed solution. It was found that the results from the model agreed with the experimental results.
4

Development of highly porous flat sheet polyvinylidene fluoride (PVDF) membranes for membrane distillation

Alsaery, Salim A. 05 1900 (has links)
With the increase of population every year, fresh water scarcity has rapidly increased and it is reaching a risky level, particularly in Africa and the Middle East. Desalination of seawater is an essential process for fresh water generation. One of the methods for desalination is membrane distillation (MD). MD process separates an aqueous liquid feed across a porous hydrophobic membrane to produce pure water via evaporation. Polyvinlidene fluoride (PVDF) membranes reinforced with a polyester fabric were fabricated as potential candidates for MD. Non-solvent induced phase separation coupled with steam treatment was used to prepare the PVDF membranes. A portion of the prepared membrane was coated with Teflon (AF2400) to increase its hydrophobicity. In the first study, the fabricated membranes were characterized using scanning electron microscopy and other techniques, and they were evaluated using direct contact MD (DCMD). The fabricated membranes showed a porous sponge-like structure with some macrovoids. The macrovoid formation and the spongy structure in the membrane cross-sections contributed significantly to a high permeate flux as they provide a large space for vapor water transport. The modified PVDF membranes with steaming and coating exhibited a permeate flux of around 40 L/h m2 (i.e. 27-30% increase to the control PVDF membrane) at temperatures of 60 °C (feed) and 20 °C (permeate). This increase in the permeate flux for the modified membranes was mainly attributed to its larger pore size on the bottom surface. In the second study, the control PVDF membrane was tested in two different module designs (i.e. semi-circular pipe and rectangular duct module designs). The semi-circular module design (turbulent regime) exhibited a higher permeate flux, 3-fold higher than that of the rectangular duct module design (laminar regime) at feed temperature of 60 °C. Furthermore, a heat energy balance was performed for each module design to determine the temperature polarization coefficients (TPC). The turbulent module design showed higher TPC (0.5-0.58) than the laminar module (0.1-0.14) (i.e. a poor module design). This indicates that the effect of temperature polarization on the laminar flow was significant, which is below the reported TPC range of 0.4-0.70.
5

Modelling and optimisation of a multistage Reverse Osmosis processes with permeate reprocessing and recycling for the removal of N-nitrosodimethylamine from wastewater using Species Conserving Genetic Algorithms

Al-Obaidi, Mudhar A.A.R., Li, Jian-Ping, Alsadaie, S.M., Kara-Zaitri, Chakib, Mujtaba, Iqbal M. 06 June 2018 (has links)
Yes / The need for desalinated seawater and reclaimed wastewater is increasing rapidly with the rising demands for drinkable water required for the world with continuously growing population. Reverse Osmosis (RO) processes are now among the most promising technologies used to remove chemicals from industrial effluents. N-nitrosamine compounds and especially N-nitrosodimethylamine (NDMA) are human carcinogens and can be found in industrial effluents of many industries. Particularly, NDMA is one of the by-products of disinfection process of secondary-treated wastewater effluent with chloramines, chlorines, and ozone (inhibitors). However, multi-stage RO processes with permeate reprocessing and recycling has not yet been considered for the removal of N-nitrosodimethylamine from wastewater. This research therefore, begins by investigating a number of multi-stage RO processes with permeate-reprocessing to remove N-nitrosodimethylamine (NDMA) from wastewater and finds the best configuration in terms of rejection, recovery and energy consumption via optimisation. For the first time we have applied Species Conserving Genetic Algorithm (SCGA) in optimising RO process conditions for wastewater treatment. Finally, permeate recycling is added to the best configuration and its performance is evaluated as a function of the amount of permeate being recycled via simulation. For this purpose, a mathematical model is developed based on the solution diffusion model, which is used for both optimisation and simulation. A number of model parameters have been estimated using experimental data of Fujioka et al. (Journal of Membrane Science 454 (2014) 212–219), so that the model can be used for simulation and optimisation with high accuracy and confidence.
6

Optimizacija tehnološkog procesa proizvodnje napitaka od enzimski hidrolizovanog permeata mleka / Beverage processing optimization of enzyme hydrolyzed milk permeate

Ilić-Udovičić Dragana 18 December 2015 (has links)
<p>Valorizacija permeata kao sporednog proizvoda industrije mleka je od izuzetnog ekolo&scaron;kog, ekonomskog i tehnolo&scaron;kog značaja.<br />Cilj doktorske disertacije je razvoj tehnolo&scaron;kog procesa prerade permeata, kao sporednog proizvoda dobijenog nakon ultrafiltracije mleka tokom proizvodnje feta sira i svežeg (&bdquo;mladog&ldquo;) sira. Ispitana je mogućnost enzimske hidrolize laktoze u permeatu kori&scaron;ćenjem enzima &beta;-galaktozidaze izolovanog iz Kluyveromyces lactis u koncentraciji 0,1, 0,3 i 0,5 g/100g na temperaturama 20&ordm;, 30&ordm; i 40 &ordm;C. Praćene su promene sadržaja laktoze, D&ndash;galaktoze i D&ndash;glukoze u vremenskim intervalima tokom 60 minuta. Posebna faza istraživanja obuhvatila je matematičko modelovanje i kinetiku procesa hidrolize laktoze u permeatu pod dejstvom &beta; &ndash;galaktozidaze i primenu hidrolizovanog permeata u proizvodnji mlečnih napitaka po odabranoj formulaciji. Predložen je tehnolo&scaron;ki proces proizvodnje napitka na bazi hidrolizovanog permeata sa dodatkom voćnih baza. Utvrđeni su parametri kvaliteta i trajnosti napitaka tokom 60 dana skladi&scaron;tenja.<br />Na temperaturi 40&deg;C dodatkom enzima &beta; -galaktozidaze u koncentraciji 0,1g/100g za 60 minuta postiže se 100% stepen hidrolize prisutne laktoze u permeatu. Sa većom koncentracijom enzima, 0,3 g/100g odnosno 0,5g/100g, na istoj temperaturi, isti efekat se postiže za 20 minuta.<br />Ispitivanjem kinetike hidrolize laktoze potvrđena je kinetika prvog reda. Generalno posmatrano visoki koeficijenti determinacije pokazuju dobro poklapanje eksperimentalnih rezultata i matematičkog modela reakcije prvog reda. Vrednosti se kreću od 0,974 (temperatura 20&deg;C) do preko 0,990 (na temperaturama 30&deg;C i 40&deg;C) pri koncentraciji enzima 0,1g/100g.<br />Proizvedeni napici od hidrolizovanog permeata su delaktozirani i ne sadrže mlečnu mast. Od ukupnih &scaron;ećera u svim napicima vi&scaron;e od 50% čini glukoza: 50,16% - napitak &scaron;umsko voće, 50,42% - napitak pomorandža/&scaron;argarepa, 54,65% - napitak multivitamin, odnosno 55,13% - napitak crveno voće.<br />Najveći sadržaj vitamina C nakon proizvodnje imao je napitak sa dodatkom voćne baze multivitamin 0,3972 mg/100g, zatim &scaron;umsko voće 0,2887 mg/100g i pomo-randža/&scaron;argarepa 0,1999 mg/100g.<br />Najveću vrednost antioksidativne aktivnosti nakon proizvodnje pokazali su uzorci napitka sa multivitaminom i &scaron;umskim voćem. Tokom perioda skladi&scaron;tenja dolazi do smanjenja DPPH vrednosti. Najmanji pad je u napitku sa pomorandžom / &scaron;argarepom (smanjenje za 17%), a najveći u napitku sa &scaron;umskim voćem (za 39%). Analizirani uzorci sadrže ukupnih polifenola u intervalu od 47,84 do 120,38 mg GAE/l u zavisnosti od vrste napitka, odnosno dodatih voćnih baza.<br />Generalno može se zaključiti da se prime-njenim tehnolo&scaron;kim procesom dobijaju napici stabilnog fizičko-hemijskog sastava tokom 60 dana skladi&scaron;tenja, visoke nutritivne i niske energetske vrednosti.</p> / <p>Valuation of the permeate as a by-product of the dairy industry is of great ecological, economic and technological importance.<br />The aim of the PhD thesis is the development of the technological process of refining permeate, as a by-product obtained after ultrafiltration of milk during the production of feta cheese and fresh cheese. The possibility of enzymatic hydrolysis of the lactose in the permeate using the enzyme &beta;-galactosidase isolated from Kluyveromyces lactis in a concentration of 0.1, 0.3 and 0.5 g / 100 g at a temperature of 20&deg;, 30&deg; and 40&deg; C was examined. Changes in the content of lactose, D-galactose and D-glucose at intervals of 60 minutes were monitored. A special stage of the research included mathematical modeling and kinetics of lactose hydrolysis in the permeate under the influence of &beta;-galactosidase and application of hydrolyzed permeate in the production of dairy products under the selected formulation. A technological process of producing a beverage on the basis of hydrolyzed permeate with the addition of fruit bases was suggested. Quality and durability parameters were determined for drinks during the 60 days of storage.<br />Addition of the enzyme &beta;-galactosidase at a concentration of 0.1 g / 100 g for 60 minutes at a temperature of 40 &deg; C a 100% degree of hydrolysis of lactose is achieved, present in the permeate. With a higher concentration of enzyme, 0.3 g / 100 g or 0.5 g / 100g, at the same temperature, the same effect can be achieved in 20 minutes.<br />By examining the kinetics of lactose hydrolysis the first order kinetics was confirmed. Generally high coefficients of determination show good correspondence between the experimental results and the mathematical model of the first order reaction. Values range from 0.974 (at a temperature of 20&deg; C) up to over 0.990 (at temperatures 30&deg; C and 40&deg; C) at a an enzyme concentration of 0.1g / 100g.<br />Beverages produced from hydrolyzed permeate are lactose-free and fat-free products. More than half of the total sugar content in all beverages consists of glucose: 50.16%-forest fruit beverage, 50.42%-beverage orange/carrot, 54.65% beverage multivitamin and 55.13% - beverage red fruit.<br />The highest vitamin C content after production was in a beverage with the addition of fruit base multivitamin (0.3972 mg/100g), followed by forest fruit (0.2887 mg/100g) and orange/carrot (0.1999 mg/100g).<br />Beverage samples with multivitamin and forest fruits showed the highest value of antioxidant activity after production. During the storage period there is a reduction of DPPH values. The smallest decrease was in the beverage with orange/carrot (decreased 17%), and the biggest in the beverage with forest fruit (39%). The content of polyphenols in analyzed samples ranges from 47.84 to 120.38 mg GAE/L depending on the type of beverage and added fruit base.<br />Overall it can be concluded that the applied technological process gives beverages of stable physical and chemical content during the 60 days of storage, of high nutritional value and low energy.</p>
7

Post Treatment Alternatives For Stabilizing Desalinated Water

Douglas, Susaye 01 January 2009 (has links)
The use of brackish water and seawater desalination for augmenting potable water supplies has focused primarily on pre-treatment, process optimization, energy efficiency, and concentrate management. Much less has been documented regarding the impact of post-treatment requirements with respect to distribution system. The goals of this study were to review current literature on post-treatment of permeate water, use survey questionnaires to gather information on post-treatment water quality characteristics, gather operation information, review general capital and maintenance cost, and identify appropriate "lessons learned" with regards to post-treatment from water purveyors participating in the Project. A workshop was organized where experts from across the United States, Europe and the Caribbean active in brackish and seawater desalination, gathered to share technical knowledge regarding post-treatment stabilization, identify solutions for utilities experiencing problems with post-treatment, note lessons learned, and develop desalination water post-treatment guidelines. In addition, based on initial workshop discussions, the iodide content of reverse osmosis and nanofiltration permeate from two seawater desalination facilities was determined. The literature review identified that stabilization and disinfection are required desalination post-treatment processes, and typically are considerations when considering 1) blending, 2) re-mineralization, 3) disinfection, and 4) materials used for storage and transport of product water. Addition of chemicals can effectively achieve post-treatment goals although considerations relating to the quality of the chemical, dosage rates, and possible chemical reactions, such as possible formation of disinfection by-products, should be monitored and studied. The survey gathered information on brackish water and seawater desalination facilities with specific regards to their post-treatment operations. The information obtained was divided into seven sections 1) general desalination facility information, 2) plant characteristics with schematics, 3) post-treatment water quality, 4) permeate, blend, and point of entry quality, 5) post-treatment operation, 6) operation and maintenance costs, 7) and lessons learned. A major consideration obtained from the survey was that facilities should conduct post-treatment pilot studies in order to identify operational problems that may impact distributions systems prior to designing the plant. Effective design and regulation considerations will limit issues with permitting for the facility. The expert workshop identified fourteen priority issues pertaining to post-treatment. Priority issues were relating to post-treatment stabilization of permeate water, corrosion control, disinfection and the challenges relating to disinfection by-product (DBP) formation, water quality goals, blending, and the importance of informing the general public. For each priority issues guidelines/recommendations were developed for how facilities can effectively manage such issues if they arise. One of the key priorities identified in the workshop was related to blending of permeate and formation of DBPs. However, it was identified in the workshop that the impact of iodide on iodinated-DBP formation was unknown. Consequently, screening evaluations using a laboratory catalytic reduction method to determine iodide concentrations in the permeate of two of the workshop participants: Tampa Bay and Long Beach seawater desalination facilities. It was found that the permeate did contain iodide, although at levels near the detection limit of the analytical method (8 [micro]g/L).
8

Utilização do permeado de leite como adjunto na produção de cerveja de alta fermentação (ALE) / Utilization of milk permeate as adjunct on the production of ale beer

Barbara Belodi dos Santos 19 February 2016 (has links)
O Brasil ocupa o 3º lugar entre os maiores produtores mundiais de cerveja e o mercado consumidor vem aumentando progressivamente. Tendo em vista que o consumidor brasileiro está em busca de novos sabores e aromas para a cerveja, uma alternativa para a redução de custos explorando tais características reside no uso de adjuntos não convencionais que possam agregar valor à bebida, principalmente na obtenção de boas características sensoriais. Ainda, visando à sustentabilidade, estes adjuntos podem ser coprodutos do processamento de alimentos. O permeado concentrado de leite, um coproduto dos laticínios, é obtido através da ultrafiltração do leite, sendo composto por água, lactose e sais. Neste trabalho foi desenvolvido um processo para a produção de uma cerveja de alta fermentação (ale), utilizando o permeado concentrado de leite como adjunto de fabricação. Foram obtidas cervejas ale com a proporção malte/permeado de 55/45 e 90/10, utilizando para isso, permeado hidrolisado pela enzima ?-galactosidase e permeado não hidrolisado. A caracterização do permeado revelou que este possui três vezes mais lactose que o soro de queijo. A melhor condição de hidrólise enzimática da lactose presente no permeado foi obtida empregando-se 2,0 mL/L de ?-galactosidase em 90 minutos, alcançando 92,5% de hidrólise. Nas cervejas com permeado hidrolisado observou-se que a presença de galactose aumentou o tempo de fermentação para 168h e a atenuação real de fermentação dos mostos também foi maior em comparação as cervejas com permeado não hidrolisado, nos quais a lactose não foi fermentada. As cervejas 90/10 com permeado hidrolisado e não hidrolisado receberam as maiores notas na análise sensorial, tendo boa aceitação entre os provadores. Como não houve diferença estatística entre as duas, foi possível reduzir custo e tempo na produção da cerveja 90/10 em escala piloto (120L) por não ser necessário o processo de hidrólise enzimática. O permeado concentrado de leite mostrou-se um excelente adjunto na produção de cervejas ale e quando empregado em baixa concentração, produziu cervejas com boa aceitação sensorial. / Brazil ranks 3rd among the largest world producers of beer and the consumer market is increasing steadily. Considering that the Brazilian consumer is looking for new flavors and aromas to the beer, a possible solution for costs reduction exploring such characteristics is using unconventional adjuncts that can increase quality of the beverage, especially in getting good sensory characteristics. In addition, aiming at sustainability, such adjuncts can be coproducts of processing foods. The concentrated milk permeate, which is a dairy factory coproduct, is obtained by milk ultrafiltration, comprising water, lactose and salts. In this work it was development a process for the production of an ale beer using concentrated milk permeate as adjunct. Ale beers were obtained from the proportion malt/permeate 55/45 and 90/10, using both permeate hydrolyzed by ? - galactosidase enzyme and permeate not hydrolyzed. The characterization of the permeate revealed that it has three times more lactose than cheese whey. The best condition of enzymatic hydrolysis of lactose present in the permeate was obtained using 2.0 mL/L of ?-galactosidase within 90 minutes, reaching 92.5 % of hydrolysis. It was observed that the presence of galactose in beers wort with hydrolysed permeate increased fermentation time to 168 h and the real attenuation of fermentation were also higher compared with non-hydrolysed permeate beers, in which lactose is not fermented. The beers 90/10 with hydrolyzed and non-hydrolyzed permeate received the highest scores in sensory analysis, meaning a good acceptance among the tasters. Once there was no statistical difference between them, it was possible to reduce costs and time in beer 90/10 production on a pilot scale (120L) for not being necessary the enzymatic hydrolysis process. The concentrated milk permeate has proved to be an excellent adjunct in the production of ale beers. It produced ale beers with good sensory acceptance when used in low concentration.
9

Utilização do permeado de leite como adjunto na produção de cerveja de alta fermentação (ALE) / Utilization of milk permeate as adjunct on the production of ale beer

Santos, Barbara Belodi dos 19 February 2016 (has links)
O Brasil ocupa o 3º lugar entre os maiores produtores mundiais de cerveja e o mercado consumidor vem aumentando progressivamente. Tendo em vista que o consumidor brasileiro está em busca de novos sabores e aromas para a cerveja, uma alternativa para a redução de custos explorando tais características reside no uso de adjuntos não convencionais que possam agregar valor à bebida, principalmente na obtenção de boas características sensoriais. Ainda, visando à sustentabilidade, estes adjuntos podem ser coprodutos do processamento de alimentos. O permeado concentrado de leite, um coproduto dos laticínios, é obtido através da ultrafiltração do leite, sendo composto por água, lactose e sais. Neste trabalho foi desenvolvido um processo para a produção de uma cerveja de alta fermentação (ale), utilizando o permeado concentrado de leite como adjunto de fabricação. Foram obtidas cervejas ale com a proporção malte/permeado de 55/45 e 90/10, utilizando para isso, permeado hidrolisado pela enzima ?-galactosidase e permeado não hidrolisado. A caracterização do permeado revelou que este possui três vezes mais lactose que o soro de queijo. A melhor condição de hidrólise enzimática da lactose presente no permeado foi obtida empregando-se 2,0 mL/L de ?-galactosidase em 90 minutos, alcançando 92,5% de hidrólise. Nas cervejas com permeado hidrolisado observou-se que a presença de galactose aumentou o tempo de fermentação para 168h e a atenuação real de fermentação dos mostos também foi maior em comparação as cervejas com permeado não hidrolisado, nos quais a lactose não foi fermentada. As cervejas 90/10 com permeado hidrolisado e não hidrolisado receberam as maiores notas na análise sensorial, tendo boa aceitação entre os provadores. Como não houve diferença estatística entre as duas, foi possível reduzir custo e tempo na produção da cerveja 90/10 em escala piloto (120L) por não ser necessário o processo de hidrólise enzimática. O permeado concentrado de leite mostrou-se um excelente adjunto na produção de cervejas ale e quando empregado em baixa concentração, produziu cervejas com boa aceitação sensorial. / Brazil ranks 3rd among the largest world producers of beer and the consumer market is increasing steadily. Considering that the Brazilian consumer is looking for new flavors and aromas to the beer, a possible solution for costs reduction exploring such characteristics is using unconventional adjuncts that can increase quality of the beverage, especially in getting good sensory characteristics. In addition, aiming at sustainability, such adjuncts can be coproducts of processing foods. The concentrated milk permeate, which is a dairy factory coproduct, is obtained by milk ultrafiltration, comprising water, lactose and salts. In this work it was development a process for the production of an ale beer using concentrated milk permeate as adjunct. Ale beers were obtained from the proportion malt/permeate 55/45 and 90/10, using both permeate hydrolyzed by ? - galactosidase enzyme and permeate not hydrolyzed. The characterization of the permeate revealed that it has three times more lactose than cheese whey. The best condition of enzymatic hydrolysis of lactose present in the permeate was obtained using 2.0 mL/L of ?-galactosidase within 90 minutes, reaching 92.5 % of hydrolysis. It was observed that the presence of galactose in beers wort with hydrolysed permeate increased fermentation time to 168 h and the real attenuation of fermentation were also higher compared with non-hydrolysed permeate beers, in which lactose is not fermented. The beers 90/10 with hydrolyzed and non-hydrolyzed permeate received the highest scores in sensory analysis, meaning a good acceptance among the tasters. Once there was no statistical difference between them, it was possible to reduce costs and time in beer 90/10 production on a pilot scale (120L) for not being necessary the enzymatic hydrolysis process. The concentrated milk permeate has proved to be an excellent adjunct in the production of ale beers. It produced ale beers with good sensory acceptance when used in low concentration.
10

Fracionamento das proteínas do soro de leite por meio de agregação proteica combinada com processos de separação por membranas

Oliveira, Alisson de January 2017 (has links)
O soro de leite é o coproduto da produção de queijos e contém proteínas com excelentes propriedades nutricionais e tecnológicas. Dentre essas proteínas, as majoritárias são a β-lactoglobulina (BLG) e a α-lactalbumina (ALA). Embora o soro do leite já seja aproveitado pelas indústrias para a produção de isolados e concentrados proteicos, esses produtos consistem em uma mistura de diversas proteínas e atualmente há um grande interesse em realizar o seu fracionamento a fim de aproveitar melhor as suas propriedades individuais. Entretanto, fracionar essas proteínas é um grande desafio devido às suas massas molares próximas, e uma combinação de diferentes abordagens baseadas nas suas características se torna necessária para possibilitar uma boa separação. A ALA apresenta uma capacidade de formar agregados proteicos em meio ácido e ausência de cálcio, sendo uma estratégia interessante para combinar com processos de separação por membranas. Diante disso, o objetivo deste trabalho foi realizar o fracionamento da BLG e da ALA a partir da agregação proteica combinada com processos de separação por membranas. O ajuste do pH para 4 e adição de citrato de sódio como agente complexante do íon cálcio possibilitou a formação de agregados proteicos da solução de isolado proteico do soro de leite 6 %, porém ao determinar a pressão de operação dessa solução utilizando membranas cerâmicas de microfiltração (MF) de 0,8 e 0,05 μm para reter os agregados proteicos, o fluxo de permeado foi baixo. O mesmo procedimento foi utilizado para a solução de soro do leite em pó 6 % e membrana de 0,8 μm, resultando, também, em um fluxo de permeado baixo durante a determinação da pressão de operação. Ao combinar a centrifugação com a ultrafiltração (UF), o sobrenadante, contendo a fração que não formou agregados proteicos, apresentou maiores fluxos de permeado em pH 7 e 10, e baixos fluxos em pH 3 e 4. A purificação do sobrenadante em pH 10 com membrana cerâmica de 5 kDa apresentou fluxo de permeado elevado e, quando a diafiltração foi realizada, o fluxo de permeado apresentou um comportamento ascendente e menor tendência ao fouling, variando entre 56,5 e 64,6 %. O sedimentado ressolubilizado em pH 10 também apresentou um fluxo de permeado elevado, porém com comportamento mais estável durante a diafiltração, e tendência ao fouling entre 81,4 e 84,6 %. Contudo, a agregação proteica precisa ser mais bem avaliada para separar as proteínas, bem como a retenção da membrana de 5 kDa, x a qual permitiu a passagem de parte das proteínas tanto do sobrenadante como do sedimentado ressolubilizado, sendo, ainda, verificado um pH mais elevado nos concentrados do que nos permeados e livre passagem dos demais íons mediante análise de condutividade elétrica. Os resultados demonstraram que o ajuste do pH para 10 possibilitou melhorar a performance do fluxo de permeado, provavelmente devido à menor interação proteína-proteína e proteína-membrana, além de ser uma estratégia interessante para minimizar os fatores limitantes em processos de separação por membranas. / Whey is the co-product of cheese production and contains proteins with excellent nutritional and technological properties. Among these proteins, β-lactoglobulin (BLG) and α-lactalbumin (ALA) are the main ones. Although whey is already used by industries to produce protein isolates and concentrates, these products consist of a mixture of several proteins and currently there is a great interest in their fractionation in order to take better advantage of their individual properties. However, fractionating whey proteins is a great challenge because of their similar molecular weight. Due to this, a combination of different approaches based on characteristics of each of these proteins becomes necessary to enable a good separation. ALA has the ability to form protein aggregates in an acidic media and absence of calcium, providing an interesting condition to combine with membrane separation processes. In view of this, the aim of this work was to fractionate BLG and ALA using a combination of protein aggregation procedure and membrane separation processes. Adjustment of pH to 4 and addition of sodium citrate as complexing agent of calcium ion allowed the formation of protein aggregates in whey protein isolate solution, but when microfiltration was carried out with ceramic membranes of 0.8 and 0.05 μm to retain the protein aggregates formed, permeate flux was low during the determination of the operating pressure of the process. The same procedure was used with whey powder solution and 0.8 μm membrane, also resulting in a low permeate flux when determining the operating pressure. By combining centrifugation with ultrafiltration, the supernatant containing the fraction that did not form protein aggregates showed higher permeate flux at pH 7 and 10, and lower permeate flux at pH 3 and 4. Purification of the supernatant at pH 10 with 5 kDa ceramic membrane showed high permeate flux and, when the diafiltration was performed, the permeate flux presented an upward behavior and lower fouling tendency, varying between 56.5 and 64.6 %. The resolubilized sediment at pH 10 also showed a higher permeate flux, but with a more stable behavior during diafiltration and fouling tendency between 81.4 and 84.6 %. Nevertheless, protein aggregation procedure needs to be better evaluated to separate the proteins as well as the retention of the 5 kDa membrane, which allowed passage of part of the proteins of the supernatant and the resolubilized sediment solutions and showed a higher pH in the xii concentrates than in the final permeate and free passage of the other ions evaluated by electrical conductivity analysis. The results showed that adjusting the pH to 10 allowed to improve the perfomance of permeate flux, probably due to the lower protein-protein and protein-membrane interactions, besides being an interesting strategy to minimize the limiting factors in PSM.

Page generated in 0.076 seconds