• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 319
  • 107
  • 47
  • 29
  • 13
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 657
  • 115
  • 106
  • 103
  • 90
  • 88
  • 76
  • 72
  • 63
  • 62
  • 61
  • 61
  • 60
  • 57
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Élaboration et Caractérisations physiques des manganites à effet magnetocalorique . / Preparation and physical characterization of the magnetocaloric effect in manganites

M'Nassri, Rafik 26 June 2013 (has links)
Les travaux présentés dans ce manuscrit consistent à élaborer par la méthode céramique des oxydes ferromagnétiques de type pérovskite et à étudier leurs propriétés physiques (structurales, magnétiques, magnétocaloriques..). Nous avons commencé ce travail par la synthèse de séries de manganites à base de praséodyme ( Pr0.6-xEuxSr0.4MnO3 et Pr0.6-xErxSr0.4MnO3 ) et de lanthane ( La0.6Sr0.2Ba0.2-x□xMnO3 et (La0.6Sr0.2Ba0.2MnO3)1-x /(Co2O3)x ) en utilisant la méthode solide-solide à haute température. Les échantillons élaborés ont été caractérisés par diffractométrie de poudre RX. Les diffractogrammes obtenues ont été affinés par la méthode Rietveld en utilisant le logiciel Fullprof. L'affinement structural a montré que les manganites synthétisés se présentent sous forme de phases pures avec des raies fines et intenses sans phases parasites et cristallisent dans des structures déformées.Des mesures magnétiques (M(T) et M(H)) ont permis d'obtenir des informations sur le comportement magnétique à basse température, les transitions magnétiques et l'évaluation de l'aimantation à saturation. L'aimantation en fonction de la température montre que ces manganites présentent des transitions ferromagnétiques - paramagnétiques et que leurs températures de Curie diminuent sous l'effet de la substitution dans le cas des composés à base du praséodyme et sous l'effet de l'introduction des lacunes dans le système basé sur le lanthane. Les isothermes M (H) confirment le comportement ferromagnétique à basses températures des échantillons étudiés. A partir de ces mesures et en utilisant les relations de Maxwell, on a déterminé les variations d'entropie magnétique ∆Sm et on a évalué l'effet magnétocalorique présent dans ces matériaux. Via la connexion entre la chaleur spécifique et l'aimantation, on a déterminé la variation de la chaleur spécifique ∆Cp dans tous ces échantillons en exploitant les résultats ∆Sm. Nos résultats confirment que les grandeurs caractéristiques de l'effet magnétocalorique sont très sensibles au champ magnétique appliqué, d'où l'étude de leur dépendance en champ magnétique présente un très grand intérêt. Cette dépendance en champ magnétique de la variation d'entropie magnétique peut être exprimée selon une loi de puissance de type ∆Sm ~ a (µ0H)n où n est appelé exposant local. Cette étude permet donc d'une part, d'identifier les matériaux qui se comportent de façon similaire et les voies d'amélioration de ces propriétés et elle constitue, d'autre part, un outil intéressant permettant d'extrapoler ces propriétés dans des conditions non accessibles au laboratoire. / The studies presented in this manuscript deal with the synthesis and characterization of ferromagnetic perovskite oxides. Four material systems have been described in this work ( Pr0.6-xEuxSr0.4MnO3 et Pr0.6-xErxSr0.4MnO3 ) et lanthanum ( La0.6Sr0.2Ba0.2-x□xMnO3 et (La0.6Sr0.2Ba0.2MnO3)1-x /(Co2O3)x ) . Our samples have been synthesized using the solid-state reaction method at high temperatures. Rietveld refinement of the X-ray diffraction patterns using Fullprof program shows that all our samples are single phase and crystallize in the distorted structures. Magnetic measurements show that all our samples exhibit a paramagnetic–ferromagnetic transition with decreasing temperature. The Curie Temperature TC shifts to lower values with increasing substitution in the Pr0.6-x(Eu or Er)xMnO3 system and under the effect of barium deficiency in the La0.6Sr0.2Ba0.2-x□xMnO3 system. From the magnetization isotherms at different temperatures, magnetic entropy change ∆Sm and relative cooling power RCP have been evaluated. By means of the connection between the specific heat and the magnetization was determined the variation of the specific heat ΔCp in these samples using the results ΔSm. Our results confirm that the characteristic values of the magnetocaloric effect are very sensitive to the applied magnetic field, where the study of their dependence on magnetic field has a very great interest. For fixed temperatures, the magnetic field dependence of magnetic entropy change ∆Sm is accounted for by the n exponent, which may be derived by a numerical fitting to the formula ∆Sm ~ a (µ0H)n where a is a constant. This study allows one hand, identify materials that behave similarly and ways to improve these properties and it is, on the other hand, a useful tool to extrapolate these properties under conditions not accessible in the laboratory.
112

Análise estrutural de materiais cerâmicos com estrutura de perovskita / Structural analysis of ceramic materials with perovskyte structure

Juan Alfredo Guevara Carrio 29 May 1998 (has links)
Vários compostos de fórmula AMO3 (A = Sr, Ca, Ba; M = Ru, Ti, Hf), com estrutura de perovskita foram sintetizados. Realizou-se uma análise estrutural dos compostos, usando difração de raios X, de fonte convencional e síncrotron, e difração de nêutrons em material policristalino. Para esta análise usaram-se dois dos programas mais reconhecidos internacionalmente para o método de Rietveld: DBWS e GSAS. Todas as estruturas analisadas foram classificadas segundo o sistema de inclinação dos octaedros de Glazer e representadas graficamente com o programa Atoms. A estrutura do SrHfO3 foi determinada por difração de nêutrons e raios X em material policristalino. Foi estudada a dependência da estrutura desses compostos com a temperatura e, com a composição, no caso das soluções sólidas SrTi1-xRuxO3 (O≤ x≤1). Duas transições estruturais de fase com a temperatura foram encontradas nos compostos SrRuO3 e SrHfO3. Nas soluções sólidas SrTi1-xRuO3 foi estudada a correlação da estrutura com as propriedades elétricas e com a estrutura eletrônica / Several compounds whose general formula was AMO3 (A = Sr, Ca, Ba; M = Ru, Ti, Hf) and which present the perovskite structure were synthesized. A structural analysis of the compounds by conventional and synchrotron X ray and neutron powder diffraction was performed. For this study was used the internationally accepted software for Rietveld analysis DBWS and GSAS. A11 of the structures analyzed were classified according to the octahedral tilt classification system of Glazer and represented with the program Atoms. The structure of SrHfO3 was determined by neutron and X ray powder diffraction. The dependence of the structure of severa1 compounds with temperature was studied. Two different structural phase transitions were found in the compounds SrRuO3 and SrHfO3. In the case of the solid solutions SrTi1-xRuxO3 (O≤ x ≤1) the dependence of the structure with the composition and the correlation with electric properties and the electronic structure was studied
113

HIGH-PERFORMANCE PEROVSKITE SOLAR CELLS BY ACTIVE LAYER COMPOSITION ENGINEERING

Shen, Lening 10 August 2021 (has links)
No description available.
114

Optimization of halide perovskite thin films by sequential physical vapour deposition for solar cell applications

Fru, Juvet Nche 10 1900 (has links)
In this thesis, we have developed a reproducible, safe, and scalable sequential thermal vapour deposition (STVD) method for the growth of quality 3D halide perovskite (HaP) thin films. High-quality methylammonium lead tri-bromide (MAPbBr3), methylammonium lead tri-iodide (MAPbI3), and methylammonium lead bromide-iodide (MAPb(I1-xBrx)3) thin films have been optimised using the STVD technique. The structural, optical, morphological, and electrical properties were tuned by varying the thicknesses of the organic (MAI, MABr) and inorganic (PbI2, PbBr2) precursor thin films and post-annealing times of the HaP. X-ray diffractograms confirmed the cubic MAPbBr3 structure with the Pm¯3 m space group, tetragonal MAPbI3 crystal structure with I4/mcm space group, and the tetragonal MAPbI3 structure being transformed to cubic MAPbBr3 system as MAPb(I1-xBrx)3 (x=0.89-0.95) forms. UV-Vis spectra revealed broad absorption bands with a redshift in absorption onset from 540 to 550 nm for MAPbBr3 and 750 to 780 nm for MAPbI3 as the thickness of respective organic precursors increased from 300 to 500 nm. The bandgap of MAPb(I1-xBrx)3 decreased from 2.21 to 2.14 eV as the thicknesses of MABr precursors increased from 300 to 500 nm. The crystallisation of the HaP started within the chamber, and prolonged post-annealing times exceeding 10 min caused the transformation of MAPbI3 to PbI2. Scanning Electron Micrographs show pin-hole-free and densely packed grains with an average size that increases as thicknesses increase. The charge carrier mobility increases while trap density decreases as the thickness of organic precursors increased. Besides, the thesis investigated the growth and stability of thin MAPbBr3 films at metal/MAPbBr3 interfaces. We studied the structure, morphology, and stability of the optimised MAPbBr3 perovskite on aluminium (Al), tin (Sn), silver (Ag), gold-zinc (Au-Zn) and gold (Au) electrodes, immediately and 60 days later. FE-SEM images show an average grain size that increased linearly with the work function from 294 nm for Al to 850 nm for Au. The MAPbBr3 grains remain glued to Sn, Ag, Au-Zn but delaminate quickly on Al. X-ray analysis of MAPbBr3 reveals variable crystallographic texturing for various metals and loss in intensity of prominent peaks at different rates over time. We found that the best thicknesses of 100 nm PbI2 and 500 nm MAI, and 100 nm PbBr2 and 500 nm MABr are needed for the preparation of quality MAPbI3 and MAPbBr3 thin films for solar cells, respectively. Quality thin MAPb(I0.11Br0.89)3 film is formed by inter-diffusion and halide exchange processes when optimised MAPbBr3 is grown on optimised MAPbI3 as a bottom layer. Al speeds up the degradation of MAPbBr3 at Al/MAPbBr3 while MAPbBr3 is relatively stable at Au-Zn/MAPbBr3 interfaces. / Thesis (PhD (Physics))--University of Pretoria, 2020. / University of Pretoria, the National Research Foundation/The World Academy of Sciences (NRF-TWAS), and NRF grant no N0115/115463 of the SARChI / Physics / PhD (Physics) / Restricted
115

High Performance Solar Cells Based on Perovskite Layers Prepared from Purified Precursor Materials / 高純度前駆体材料を用いて作製したペロブスカイト層に基づいた高性能太陽電池の開発

Ozaki, Masashi 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21786号 / 工博第4603号 / 新制||工||1717(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 村田 靖次郎, 教授 辻 康之, 教授 小澤 文幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
116

Thermoelectrics and Oxygen Sensing Studies of Selected Perovskite Oxides

Behera, Sukanti January 2016 (has links)
Perovskite oxides show wide range of applications in the area of magnetism, ferroelectricity, piezoelectricity, thermoelectricity, gas sensing, catalyst development, solid oxide fuel cell, etc. This is due to flexibility in the structure and compositions that can be tuned by specific element doping. In the perovskite oxide (ABO3), large cation (A) is 12 -coordinated and smaller B-cation is 6 coordinated with oxide ions. Oxide materials are considered as better candidates for thermoelectric applications (interconversion of thermal into electrical energy) due to its non-toxicity and thermal stability at elevated temperature. These are insulating in nature and the conductivity can be increased by doping A and / or B –sites. Perovskite oxides are also used for oxygen monitoring in different applications including control and optimization of combustion of fossil fuels in industries and automobiles, biological and defines places, etc. In the present study, we focused on thermoelectric properties in single perovskite oxides of lanthanum cobaltite and calcium manganite and a double perovskite oxide of dysprosium barium cobaltite. Also, the oxygen sensing behaviour of dysprosium barium cobaltite at elevated temperatures is studied. The thesis contains seven chapters and a summary of respective chapters are given below. The first chapter outlines the basics of thermoelectric and gas sensing applications of both perovskite and double perovskite oxides. In the initial part, thermoelectric phenomena are explained. Thermoelectric effect is the conversion of thermal energy to electrical energy and vice-versa. Higher thermoelectric efficiency (η) can be achieved by maintaining a large temperature difference across the material. The efficiency depends on the thermoelectric figure of merit (zT) of material, which depends on thermopower (S), electrical resistivity (ρ) and thermal conductivity (κ) of the material and hence needs to be optimized. The latter part discusses the oxygen sensing property of distorted double perovskite 112 structure type as it shows advantages over other materials due to oxygen nonstoichiometric. Further, an overview of the relevant literature, objective and scope of the thesis are mentioned. The second chapter elucidates the materials and methods used for the present work. The materials viz. LaCoO3, CaMnO3-δ and DyBaCo2O5+δ, were selected for thermoelectric and oxygen sensing studies. Both the conventional solid state and soft chemistry methods were adopted for the synthesis of these materials. Powders were densified into pellets by hot uniaxial pressing / cold isostatic pressing and various heat treatments were carried out. Samples thus prepared were phase pure as confirmed using powder x-ray diffraction and Rietveld refinement performed for structural analysis. Morphological studies were carried out using scanning electron microscopy and transmission electron microscopy. Further Raman and x-ray photoelectron spectroscopic characterization of these materials were discussed. The transport properties viz. electrical resistivity, thermopower and thermal conductivity of compact pellets were measured at elevated temperatures. Further, the home-built apparatus for room temperature See beck measurements and chemo resistive oxygen sensing were explained in detail as a part of this work. The third chapter describes the effect of monovalent ion doping (Na+ and K+) at A-site of lanthanum cobaltite on thermoelectric properties. Lanthanum cobaltite system exhibit exotic behaviour due to commensuration phenomena of spin, lattice, charge and metal insulator transition. The synthesis, followed by structural refinements by Rietveld method using Fullprof suit program are explained. The results of the transport properties indicate that there is no appreciable change in the See beck Coefficient of K-doped samples throughout the studied temperature range. The Na-doped samples exhibit a decrease in the Seebeck value with increasing Na content at room temperature. At higher temperatures Seebeck value matches with that of the parent sample. This may be due to a change in the ratio of the concentration of Co4+/Co3+ ions which increases the configurational entropy of the system. In conclusion, the highest figure of merit (0.01) found for the Na / K- doped lanthanum cobaltite is for 15 atomic wt. % of doping amongst the studied samples. The fourth chapter explains about Tb/Nb co-doped calcium manganite for thermoelectric applications. The CaMnO3-δ shows enhanced thermoelectric properties, exhibits n-type behavior and the absolute thermopower is found to be 129 µV/K. Here, we investigated the Terbium and Niobium codoped at Ca and Mn-sites respectively. The presence of oxygen non-stoichiometry was confirmed using Raman spectroscopy (Mn3+ peak at 614 cm-1) and δ value was evaluated by iodometric titration. The thermoelectric properties of cold isostatic pressed (CIP) pellets prepared by the solid state and soft chemistry routes are compared. The non-monotonous behavior of absolute thermopower may be due to the increase of Mn3+ in the Mn4+ matrix and also the presence of oxygen defects in compounds. The thermoelectric figure of merit of solid state sample CaMnO3-δ estimated of 0.036 at 825K. The fifth chapter describes the thermoelectric properties of double Perovskite AA’B2O6 (112 type): (RE)BaCo2O5+δ. It is a disordered double perovskite with non-stoichiometry in oxygen and exhibits mixed valences of Cobalt. Resistivity of DyBaCo2O5+δ was found to be 0.09 Ω cm and Seebeck coefficient is found to be 42 µV/K. In order to improve the thermopower value, the Fe is substituted at Co-site. This varies the valences of Cobalt that in turn leads to a higher thermopower. Also, the morphology of thermally etched CIP pellets recorded and correlated with the transport properties. It shows the highest thermoelectric figure of merit of 0.25 at 773 K for 20 at wt % of Fe substituted sample. The sixth chapter explains about oxygen sensing studies of DyBaCo2O5+δ (112 type). The detailed structural and morphological characterization studies were carried out. Thermogravimetric analysis at isothermal temperature 873 K shows fast intake/release of oxygen of this disordered double perovskite structure. The higher chemo resistive oxygen sensitivity at the elevated temperature was measured. Further, the systematic study on the effect of oxygen sensing on the substitution of Fe and Cu at Co-site in DyBaCo2-xM xO5+δ was investigated. The possible bulk diffusion mechanism at higher temperature due to movement of oxygen defects were explained. The highest sensitivity was obtained for x = 0.4 at % of Fe and 0.2 at % of Cu at 973 K and 823 K respectively. The key findings and future aspects are summarized in the chapter-7.
117

Chemical modifications and passivation approaches in metal halide perovskite solar cells

Abdi Jalebi, Mojtaba January 2018 (has links)
This dissertation describes our study on different physical properties of passivated and chemically modified hybrid metal halide perovskite materials and development of highly efficient charge transport layers for perovskite solar cells. We first developed an efficient electron transport layer via modification of titanium dioxide nanostructure followed by a unique chemical treatment in order to have clean interface with fast electron injection form the absorber layer in the perovskite solar cells. We then explored monovalent cation doping of lead halide perovskites using sodium, copper and silver with similar ionic radii to lead to enhance structural and optoelectronic properties leading to higher photovoltaic performance of the resulting perovskite solar cells. We also performed thorough experimental characterizations together with modeling to further understand the chemical distribution and local structure of perovskite films upon monovalent cation doping. Then, we demonstrate a novel passivation approach in alloyed perovskite films to inhibit the ion segregation and parasitic non-radiative losses, which are key barriers against the continuous bandgap tunability and potential for high-performance of metal halide perovskites in device applications, by decorating the surfaces and grain boundaries with potassium halides. This leads to luminescence quantum yields approaching unity while maintaining high charge mobilities along with the inhibition of transient photo-induced ion migration processes even in mixed halide perovskites that otherwise show bandgap instabilities. We demonstrate a wide range of bandgaps stabilized against photo-induced ion migration, leading to solar cell power conversion efficiencies of 21.6% for a 1.56 eV absorber and 18.3% for a 1.78 eV absorber ideally suited for tandem solar cells. We then systematically compare the optoelectronic properties and moisture stability of the two developed passivation routes for alloyed perovskites with rubidium and potassium where the latter passivation route showed higher stability and loading capacity leading to achieve substantially higher photoluminescence quantum yield. Finally, we explored the possibility of singlet exciton fission between low bandgap perovskites and tetracene as the triplet sensitizer finding no significant energy transfer between the two. We then used tetracene as an efficient dopant-free hole transport layer providing clean interfaces with perovskite layer leading to high photoluminescence yield (e.g. ~18%). To enhance the poor ohmic contact between tetracene and the metal electrode, we added capping layer of a second hole transport layer which is extrinsically doped leading to 21.5% power conversion efficiency for the subsequent solar cells and stabilised power output over 550 hours continuous illumination.
118

Investigation of the Long-Term Operational Stability of Perovskite/Silicon Tandem Solar Cells

Aljamaan, Faisal 14 December 2021 (has links)
With the global energy demand projected to grow rapidly, it is imperative to divest from traditional greenhouse gas-based power production toward renewable energy sources such as solar. In recent years, solar photovoltaics (PV) hold a large share among renewables sources. Currently, the market is dominated by crystalline silicon solar cells due to their low levelized cost of energy (LCOE) values. However, to sustain this progress, the power conversion efficiency of PV devices must be further improved since tiny costs cut from the other expenses is difficult. On the other hand, the margin for the PCE improvement in c-Si technology is also quite limited since the technology is approaching its practical limits. At this stage, coupling c-Si devices with another efficient solar cell in tandem configuration is a promising way to overcome this challenge. Perovskite solar cells (PSCs) represent a breakthrough solar technology to enable this target due to their proven high efficiency and potential cost-effectiveness. Whereas perovskite/silicon tandem solar cells are promising, their operational stabilities are still a significant concern for market entry. Here, the degradation mechanism of n-i-p perovskite/Si tandem solar cells was investigated. Thermal stability tests have shown severe degradation in such tandem devices. On the other hand, tandem devices were relatively stable when placed in a humidity cabinet with 25% relative humidity (RH). Conversely, temperature degraded devices showed cracks all over the perovskite surface and rupture in the top electrode after 1000 hrs at 85 oC. Additionally, silver iodide formation was depicted in XRD and XPS analysis. To enhance the stability, methods to reduce the hysteresis were studied. First, potassium chloride (KCl) was applied as a passivation agent to the electron transport layer (ETL) to reduce surface defects. Second, 2D passivation was applied to reduce trap density and enhance the crystallinity of the perovskite film. Finally, organic molecules were placed between the hole transport layer (HTL) and metal-oxide interface as interlayers to prevent diffusion of metal oxide to the HTL and accumulation of the dopant at the metal-oxide interface. After passivation and interface layers, stability enhanced but further improvement is still required.
119

High-pressure synthesis of the 4d and 5d transition-metal oxides with the perovskite and the perovskite-related structure and their physical properties

Cheng, Jinguang 30 September 2010 (has links)
A Walker-type multianvil high-pressure facility is capable of high-pressure syntheses and measurements beyond 10 GPa and has been utilized in my research to synthesize the 4d Ruthenium and Rhodium and the 5d Iridium oxides with the perovskite-related structures. Under high-pressure and high-temperature conditions, these families of oxides can be enlarged to a great extent so that enables us not only to address the long-standing problem about ferromagnetism in the perovskite ruthenates but also explore new phenomena associated with the structural and electronic properties in the iridates and rhodates. In the perovskite ruthenates ARuO₃ (A= Ca, Sr, and Ba), a systematic study of the variations of the ferromagnetic transition temperature T[subscript c] and the critical isothermal magnetization as a function of the average A-site cation size and the size variance as well as external high pressures reveals explicitly the crucial role of the local lattice strain and disorder on T[subscript c] and the nature of the localized-electron ferromagnetism. However, such a steric effect is dominated by the electronic effect in another perovskite ruthenate PbRuO₃, which is a paramagnetic metal down to 1.8 K and undergoes a first-order structural transition to a low-temperature Imma phase at Tt [almost equal to] 90 K. Bandwidth broadening due to orbital hybridization between Pb-6s and Ru-4d plays an important role in suppressing the ferromagnetism in the Sr1-zPbzRuO₃ system. The high-pressure sequence of the 9R-BaIrO₃ was explored and three more polytypes, i.e. 5H, 6H and 3C, were identified under 10 GPa. With increasing fraction of the corner- to face-sharing IrO₆/₂ octahedra, the ground states of BaIrO₃ evolve from a ferromagnetic insulator with T[subscript c] [almost equal to] 180 K in the 9R phase to a ferromagnetic metal with T[subscript c] [almost equal to] 50 K in the 5H phase, and finally to an exchange-enhanced paramagnetic metal near a quantum critical point in the 6H phase. In addition to the perovskite SrRhO₃, a new 6H polytype was synthesized for the first time under high pressure and a pressure-temperature phase diagram was given for the 6H-perovskite transformation. Restoration of the Curie-Weiss behavior in the high-temperature magnetic susceptibility [chi](T) of the perovskite SrRhO₃ resolves the puzzle about unusual dependence of [chi]⁻¹ [symbol] T² reported earlier and highlights the importance of spin-orbit coupling in the 4d and 5d transition-metal oxides. / text
120

The synthesis and characterisation of some hexagonal perovskites

Adkin, Josephine J. January 2008 (has links)
The structural chemistry and magnetic properties of a number of manganese containing hexagonal perovskites have been studied by X-ray diffraction, neutron diffraction and magnetometry. Trends in the magnetic properties are investigated as a function of the hexagonal stacking sequence and manganese oxidation state. The synthesis of the series of BaMnO<sub>3-x</sub> hexagonal perovskites is discussed. By varying both the partial pressure of oxygen and the firing temperature, stacking sequences with a range of hexagonal to cubic layer ratios can be synthesised. Factors which increase the structural tolerance factor are found to increase the proportion of hexagonal layers in the stacking sequence. The crystallographic properties of the BaMnO<sub>3-x</sub> compounds are discussed, and the oxide vacancies are found to be exclusively located in the face-sharing hexagonal (h) layers, particularly those which are adjacent to two apex-sharing cubic (c) layers. The preferential localisation of oxide vacancies in chc sites can be used to rationalise the observed stacking sequences, as well as the limiting stoichiometries of BaMnO<sub>3-x</sub> structures. The magnetic behaviour of the BaMnO<sub>3-x</sub> phases is investigated, both individually and as a function of the stacking sequence. A strong direct exchange interaction between face-sharing cations couples all magnetic moments antiferromagnetically above ambient temperature. A slightly weaker interaction (utilising the 180° superexchange pathways between apex-sharing MnOe octahedra) results in three-dimensional antiferromagnetic order at a temperature in the range 230 ≤ T (K) ≤ 280. The strength of this interaction is found to be dependent on the length of the face-sharing chains. A third interaction occurs at T ~ 45K, believed to represent a canting transition. Low temperature neutron diffraction data reveal that the magnetic moments order in a simple antiferromagnetic manner. The magnitude of the ordered moment shows a dependence on the length of the face sharing chains, where phases with shorter chains have a larger ordered moment. Long-range magnetic order is disrupted by charge disorder in the mixed Mn(III)/Mn(IV) system 4H-BaMnO<sub>2.6 5(1)</sub>. The hexagonal BaMn<sub>1-z</sub>Ti<sub>z</sub> O<sub>3- x</sub> and BaMn<sub>1-z</sub>Zr<sub>z</sub>0<sub>3-x</sub> systems were also studied. Synthesis under argon atmospheres allows a range of new phases to be accessed. These include a novel manganese-zirconium phase, 6H-BaMn<sub>0.8</sub>Zr<sub>0.2</sub>O<sub>2.81(1)</sub>, and BaMn<sub>o.55</sub>Ti<sub>0.45,/sub>O<sub>3-x</sub>, which adopts the rare 15R' stacking sequence. The BaMn<sub>1-z</sub> Ti<sub>z</sub>O<sub>3-x</sub> system confirms that although the tolerance factor controls the proportion of cubic layers, it does not control the arrangement of these layers. This is controlled by the size of the B cations and the proportion of oxide vacancies. Partial cation order occurs in 6H-BaMn<sub>o.8</sub>Zr<sub>0.2</sub>O<sub>2.81(1)</sub>, which can be rationalised on the basis of the size difference between manganese and zirconium ions. Topotactic reductions using binary hydrides are carried out in order to decouple the manganese oxidation state from the adopted stacking sequence. Using hydride reductions, 4H-Ba<sub>o.5</sub>Sr<sub>o.5</sub>MnO<sub>3-x</sub> can be topotactically reduced to 4H-Ba<sub>o.5</sub>Sr<sub>o.5</sub>MnO<sub>2.o2(1)</sub>. This increases the strength of the 180° superexchange interaction, and antiferromagnetic order is achieved above ambient temperature. Using the same techniques, 4H-BaMnO<sub>3-x</sub> can be reduced to 4H-BaMnO<sub>2.47(1)</sub> or 4H-BaMnO<sub>2.o6(1)</sub>. These phases undergo a distortion to an orthorhombic unit cell.

Page generated in 0.0901 seconds