1 |
Video Data Collection for Continuous Identity AssuranceVenkatesan, Janani 27 June 2016 (has links)
Frequently monitoring the identity of a person connected to a secure system is an important component in a cyber-security system. Identity Assurance (IA) mechanisms which continuously confirm and verify users’ identity after the initial authentication process ensure integrity and security. Such systems prevent unauthorized access and eliminate the need of an authorized user to present credentials repeatedly for verification. Very few cyber-security systems deploy such IA modules. These IA modules are typically based on computer vision and machine learning algorithms. These algorithms work effectively when trained with representative datasets. This thesis describes our effort at collecting a small dataset of multi-view videos of typical work session of several subjects to serve as a resource for other researchers of IA algorithms to evaluate and compare the performance of their algorithms with those of others. We also present a Proof of Concept (POC) face matching algorithm and experimental results with this POC implementation for a subset of collected dataset.
|
2 |
Robotic Person-Following in Cluttered EnvironmentsKulp, William R. 27 August 2012 (has links)
No description available.
|
3 |
Robotické následování osoby pomocí neuronových sítí / Robotic Tracking of a Person using Neural NetworksZakarovský, Matúš January 2020 (has links)
Hlavným cieľom práce bolo vytvorenie softvérového riešenia založeného na neurónových sieťach, pomocou ktorého bolo možné detegovať človeka a následne ho nasledovať. Tento výsledok bol dosiahnutý splnením jednotlivých bodov zadania tejto práce. V prvej časti práce je popísaný použitý hardvér, softvérové knižnice a rozhrania pre programovanie aplikácií (API), ako aj robotická platforma dodaná skupinou robotiky a umelej inteligencie ústavu automatizácie a meracej techniky Vysokého Učenia Technického v Brne, na ktorej bol výsledný robot postavený. Následne bola spracovaná rešerš viacerých typov neurónových sietí na detekciu osôb. Podrobne boli popísané štyri detektory. Niektoré z nich boli neskôr testované na klasickom počítači alebo na počítači NVIDIA Jetson Nano. V ďalšom kroku bolo vytvorené softvérové riešenie tvorené piatimi programmi, pomocou ktorého bolo dosiahnuté ciele ako rozpoznanie osoby pomocou neurónovej siete ped-100, určenie reálnej vzdialenosti vzhľadom k robotu pomocou monokulárnej kamery a riadenie roboty k úspešnému dosiahnutiu cieľa. Výstupom tejto práce je robotická platforma umožnujúca detekciu a nasledovanie osoby využiteľné v praxi.
|
4 |
Cooperative people detection and tracking strategies with a mobile robot and wall mounted camerasMekonnen, Alhayat Ali 18 March 2014 (has links) (PDF)
Actuellement, il y a une demande croissante pour le déploiement de robots mobile dans des lieux publics. Pour alimenter cette demande, plusieurs chercheurs ont déployé des systèmes robotiques de prototypes dans des lieux publics comme les hôpitaux, les supermarchés, les musées, et les environnements de bureau. Une principale préoccupation qui ne doit pas être négligé, comme des robots sortent de leur milieu industriel isolé et commencent à interagir avec les humains dans un espace de travail partagé, est une interaction sécuritaire. Pour un robot mobile à avoir un comportement interactif sécuritaire et acceptable - il a besoin de connaître la présence, la localisation et les mouvements de population à mieux comprendre et anticiper leurs intentions et leurs actions. Cette thèse vise à apporter une contribution dans ce sens en mettant l'accent sur les modalités de perception pour détecter et suivre les personnes à proximité d'un robot mobile. Comme une première contribution, cette thèse présente un système automatisé de détection des personnes visuel optimisé qui prend explicitement la demande de calcul prévue sur le robot en considération. Différentes expériences comparatives sont menées pour mettre clairement en évidence les améliorations de ce détecteur apporte à la table, y compris ses effets sur la réactivité du robot lors de missions en ligne. Dans un deuxiè contribution, la thèse propose et valide un cadre de coopération pour fusionner des informations depuis des caméras ambiant affixé au mur et de capteurs montés sur le robot mobile afin de mieux suivre les personnes dans le voisinage. La même structure est également validée par des données de fusion à partir des différents capteurs sur le robot mobile au cours de l'absence de perception externe. Enfin, nous démontrons les améliorations apportées par les modalités perceptives développés en les déployant sur notre plate-forme robotique et illustrant la capacité du robot à percevoir les gens dans les lieux publics supposés et respecter leur espace personnel pendant la navigation.
|
5 |
Visual Tracking / Visuell följningDanelljan, Martin January 2013 (has links)
Visual tracking is a classical computer vision problem with many important applications in areas such as robotics, surveillance and driver assistance. The task is to follow a target in an image sequence. The target can be any object of interest, for example a human, a car or a football. Humans perform accurate visual tracking with little effort, while it remains a difficult computer vision problem. It imposes major challenges, such as appearance changes, occlusions and background clutter. Visual tracking is thus an open research topic, but significant progress has been made in the last few years. The first part of this thesis explores generic tracking, where nothing is known about the target except for its initial location in the sequence. A specific family of generic trackers that exploit the FFT for faster tracking-by-detection is studied. Among these, the CSK tracker have recently shown obtain competitive performance at extraordinary low computational costs. Three contributions are made to this type of trackers. Firstly, a new method for learning the target appearance is proposed and shown to outperform the original method. Secondly, different color descriptors are investigated for the tracking purpose. Evaluations show that the best descriptor greatly improves the tracking performance. Thirdly, an adaptive dimensionality reduction technique is proposed, which adaptively chooses the most important feature combinations to use. This technique significantly reduces the computational cost of the tracking task. Extensive evaluations show that the proposed tracker outperform state-of-the-art methods in literature, while operating at several times higher frame rate. In the second part of this thesis, the proposed generic tracking method is applied to human tracking in surveillance applications. A causal framework is constructed, that automatically detects and tracks humans in the scene. The system fuses information from generic tracking and state-of-the-art object detection in a Bayesian filtering framework. In addition, the system incorporates the identification and tracking of specific human parts to achieve better robustness and performance. Tracking results are demonstrated on a real-world benchmark sequence.
|
6 |
Learning discriminative models from structured multi-sensor data for human context recognitionSuutala, J. (Jaakko) 17 June 2012 (has links)
Abstract
In this work, statistical machine learning and pattern recognition methods were developed and applied to sensor-based human context recognition. More precisely, we concentrated on an effective discriminative learning framework, where input-output mapping is learned directly from a labeled dataset. Non-parametric discriminative classification and regression models based on kernel methods were applied. They include support vector machines (SVM) and Gaussian processes (GP), which play a central role in modern statistical machine learning. Based on these established models, we propose various extensions for handling structured data that usually arise from real-life applications, for example, in a field of context-aware computing.
We applied both SVM and GP techniques to handle data with multiple classes in a structured multi-sensor domain. Moreover, a framework for combining data from several sources in this setting was developed using multiple classifiers and fusion rules, where kernel methods are used as base classifiers. We developed two novel methods for handling sequential input and output data. For sequential time-series data, a novel kernel based on graphical presentation, called a weighted walk-based graph kernel (WWGK), is introduced. For sequential output labels, discriminative temporal smoothing (DTS) is proposed. Again, the proposed algorithms are modular, so different kernel classifiers can be used as base models. Finally, we propose a group of techniques based on Gaussian process regression (GPR) and particle filtering (PF) to learn to track multiple targets.
We applied the proposed methodology to three different human-motion-based context recognition applications: person identification, person tracking, and activity recognition, where floor (pressure-sensitive and binary switch) and wearable acceleration sensors are used to measure human motion and gait during walking and other activities. Furthermore, we extracted a useful set of specific high-level features from raw sensor measurements based on time, frequency, and spatial domains for each application. As a result, we developed practical extensions to kernel-based discriminative learning to handle many kinds of structured data applied to human context recognition. / Tiivistelmä
Tässä työssä kehitettiin ja sovellettiin tilastollisen koneoppimisen ja hahmontunnistuksen menetelmiä anturipohjaiseen ihmiseen liittyvän tilannetiedon tunnistamiseen. Esitetyt menetelmät kuuluvat erottelevan oppimisen viitekehykseen, jossa ennustemalli sisääntulomuuttujien ja vastemuuttujan välille voidaan oppia suoraan tunnetuilla vastemuuttujilla nimetystä aineistosta. Parametrittomien erottelevien mallien oppimiseen käytettiin ydinmenetelmiä kuten tukivektorikoneita (SVM) ja Gaussin prosesseja (GP), joita voidaan pitää yhtenä modernin tilastollisen koneoppimisen tärkeimmistä menetelmistä. Työssä kehitettiin näihin menetelmiin liittyviä laajennuksia, joiden avulla rakenteellista aineistoa voidaan mallittaa paremmin reaalimaailman sovelluksissa, esimerkiksi tilannetietoisen laskennan sovellusalueella.
Tutkimuksessa sovellettiin SVM- ja GP-menetelmiä moniluokkaisiin luokitteluongelmiin rakenteellisen monianturitiedon mallituksessa. Useiden tietolähteiden käsittelyyn esitetään menettely, joka yhdistää useat opetetut luokittelijat päätöstason säännöillä lopulliseksi malliksi. Tämän lisäksi aikasarjatiedon käsittelyyn kehitettiin uusi graafiesitykseen perustuva ydinfunktio sekä menettely sekventiaalisten luokkavastemuuttujien käsittelyyn. Nämä voidaan liittää modulaarisesti ydinmenetelmiin perustuviin erotteleviin luokittelijoihin. Lopuksi esitetään tekniikoita usean liikkuvan kohteen seuraamiseen. Menetelmät perustuvat anturitiedosta oppivaan GP-regressiomalliin ja partikkelisuodattimeen.
Työssä esitettyjä menetelmiä sovellettiin kolmessa ihmisen liikkeisiin liittyvässä tilannetiedon tunnistussovelluksessa: henkilön biometrinen tunnistaminen, henkilöiden seuraaminen sekä aktiviteettien tunnistaminen. Näissä sovelluksissa henkilön asentoa, liikkeitä ja astuntaa kävelyn ja muiden aktiviteettien aikana mitattiin kahdella erilaisella paineherkällä lattia-anturilla sekä puettavilla kiihtyvyysantureilla. Tunnistusmenetelmien laajennuksien lisäksi jokaisessa sovelluksessa kehitettiin menetelmiä signaalin segmentointiin ja kuvaavien piirteiden irroittamiseen matalantason anturitiedosta. Tutkimuksen tuloksena saatiin parannuksia erottelevien mallien oppimiseen rakenteellisesta anturitiedosta sekä erityisesti uusia menettelyjä tilannetiedon tunnistamiseen.
|
7 |
Mapování trajektorií pohybu chodců v záznamu pořízeným dronem / Mapping of the Pedestrian Movement Trajectory in a Video Recording Captured by a DroneŠťastný, Filip January 2020 (has links)
This master's thesis deals with pedestrian detection using neural networks in a video record captured by drone. Pedestrians are tracked, and their GPS coordinates are calculated using digital elevation models and mapped based on their identity and an information provided by the drone.
|
Page generated in 0.0807 seconds