• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Monitoring and Biological Control of Invasive Insect Pests

Malek, Robert Nehme 23 April 2020 (has links)
Invasive species are alien to the ecosystem under consideration and cause economic or environmental damage or harm to human health. Two alien insects that fit this description are the brown marmorated stink bug, Halyomorpha halys and the spotted lanternfly, Lycorma delicatula. Both invaders are polyphagous pests that feed on a myriad of plant species and inflict severe crop losses. As sustainable control methods depend on the accurate monitoring of species’ invasion and involve the use of natural enemies, we addressed these two facets by exploring novel monitoring techniques and deciphering host-parasitoid interactions for improved integrated pest management. Thus, we adopted ‘BugMap’, a citizen science initiative that enables students, farmers and everyday citizens to report sightings of H. halys from Italy, with emphasis on Trentino-Alto Adige. Aside from fostering citizen participation in scientific endeavors and the enhanced literacy that ensues, BugMap helped uncover the invasion dynamics of H. halys and forecast its potential distribution in Trentino, all while coordinating technical monitoring and informing management strategies. The most promising agent currently under study for the classical biological control of H. halys is the Asian egg parasitoid Trissolcus japonicus. To assess the wasp’s potential non-target impacts, we investigated its foraging behavior in response to chemical traces ‘footprints’ deposited by its main host H. halys and by a suboptimal predatory species, the spined soldier bug, Podisus maculiventris. Wasps exhibited a ‘motivated searching’ when in contact with footprints originating from both species. However, T. japonicus arrestment was significantly stronger in response to H. halys footprints, compared with P. maculiventris, implying the presence of underlying chemical cues that shape its natural preferences. A series of GC-MS chemical analyses revealed that n-tridecane and (E)-2-decenal were more abundant in H. halys footprints and are probably the key components utilized by the wasp for short range host location. The function of the aforementioned compounds was studied, n-tridecane acted as an arrestant, prolonging T. japonicus residence time, whereas (E)-2-decenal fulfilled its presumed defensive role and repelled the wasp. These results shed new light on the chemical ecology of T. japonicus and help expand the understanding of parasitoid foraging and its implications for classical biological control. Moving to the other invader L. delicatula, an egg parasitoid Anastatus orientalis was reported attacking it at high rates in its native range in Eastern Asia and may play a key role in reducing its populations there. A series of bioassays revealed that wasps responded to footprints deposited by L. delicatula gravid females by initiating a strong searching behavior. Moreover, A. orientalis preferred to oviposit in egg masses with intact oothecae, suggesting that the host’s egg covering functions as a trigger for A. orientalis probing and oviposition. Thus, A. orientalis not only overcomes, but also reverses an important line of host structural defense for its own fitness gains. This dissertation discusses the benefits of combining citizen science with traditional monitoring, and the usefulness of decoding host-parasitoid interactions to design more efficacious management strategies of invasive insect pests.
2

Dispersal and mating behaviour of Queensland fruit fly, Bactrocera tryoni(Froggatt) (Diptera: Tephritidae): Implicationsfor population establishment and control.

Weldon, Christopher William January 2005 (has links)
The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), a major pest of horticulture in eastern Australia, is a relatively poor coloniser of new habitat. This thesis examines behavioural properties that might limit the ability of B. tryoni to establish new populations. As the potential for B. tryoni to establish an outbreak population may be most directly limited by mechanisms associated with dispersal and mating behaviour, these two factors were the focus of this research project. The relevance of dispersal and mating behaviour for control of outbreak populations was assessed. Dispersal (i) Dispersal patterns of males and females are not different. Dispersal of post-teneral male B. tryoni from a point within an orchard near Richmond, New South Wales, was monitored following temporally replicated releases. Application of sterile insect technique (SIT) requires knowledge of dispersal from a release point so that effective release rates can be determined. In addition, dispersal following introduction to new habitat can lead to low or negative population growth and an Allee effect. In Spring and Autumn, 2001 � 2003, three different strains of B. tryoni were released: (1) wild flies reared from infested fruit collected in the Sydney Basin; (2) a laboratory-reared strain with a colour mutation (white marks); and (3) sterile flies obtained by gamma-irradiation of a mass-reared strain. Dispersal was monitored using a grid of traps baited with the male attractant, cuelure. During the majority of releases, flies were massmarked using a self-marking technique and fluorescent pigment powder to enable identification of recaptured flies. A preliminary study found that fluorescent pigment marks had no effect on adult survival and marks did not fade significantly in the laboratory over a period of five weeks after eclosion. As cuelure repels inseminated sexually mature female B. tryoni, unbaited, coloured flat sticky traps, and black and yellow sticky sphere traps baited with a food lure (protein autolysate solution) were used to supplement traps baited with cuelure. The effectiveness of these two sticky trap types was assessed, and recaptures used to compare patterns of dispersal from a release point by male and female B. tryoni. Fluorescent yellow (chartreuse), green, and clear unbaited flat sticky traps were relatively ineffective for monitoring dispersal of sterile male and female B. tryoni, recapturing only 0.1% of released sterile flies. Monitoring dispersal with sticky ball traps baited with protein autolysate solution was more successful, with yellow spheres and black spheres recapturing 1.7% and 1.5%, respectively. Trap colour had no effect on recaptures on flat sticky traps or sticky spheres. Equal recapture rates on yellow and black sticky sphere traps suggests that the odour of yeast autolysate solution was more important than colour for attraction of post-teneral flies to traps. Using the results of recaptures on odoriferous black and yellow sticky sphere traps within one week of release, regression equations of male and female recaptures per trap were found to be similar (Figure 4-3). This is the first study to clearly indicate that post-teneral dispersal patterns of male and female B. tryoni released from a point do not differ, enabling the use of existing models to predict density of both sexes of B. tryoni following post-teneral dispersal. (ii) Males disperse further in Spring than in Autumn, but this is not temperature-related. Analysis of replicated recaptures in traps baited with cuelure revealed that dispersal of male B. tryoni in an orchard near Richmond, New South Wales, was higher in Spring than in Autumn (Figure 5-6). As the maximum daily temperature was significantly higher in Spring than in Autumn this result was unexpected, since earlier studies have found that B. tryoni disperse at the onset of cool weather in search of sheltered over-wintering sites. Dispersal of post-teneral B. tryoni may have been affected by habitat suitability; it was found that seasonal trends in dispersal could have been influenced by local habitat variables. Low mean dispersal distances in Autumn may be explained by the presence of fruiting hosts in the orchard, or the availability of resources required by over-wintering flies. There was no significant correlation between temperature and mean dispersal distance, suggesting that higher rates of dispersal cannot be explained by temperature-related increases in activity. Recapture rate per trap was significantly negatively correlated with increasing daily maximum and average temperature. This may have consequences for detection of B. tryoni outbreaks in quarantine areas due to reduced cuelure trap efficiency. (iii) Maturity and source variation affect dispersal and response to cuelure. This research indicated that most male and female B. tryoni do not disperse far from a release point, suggesting that an invading propagule would not spread far in the first generation. However, there is considerable variation in flight capability among individuals. Comparison of wild, laboratory-reared white marks, and gamma-irradiated sterile male B. tryoni indicated that mean dispersal distance and redistribution patterns were not significantly affected by fly origin. Despite no difference in dispersal distance from the release point, recaptures of wild and sterile males per Lynfield trap baited with cuelure were highest within one week after release, whereas recaptures of white marks males per trap increased in the second week. This result may offer evidence to support the hypothesis that sterile male B. tryoni respond to cuelure at an earlier age. Rearing conditions used to produce large quantities of males for sterilisation by gamma-irradiation may select for earlier sexual maturity. Mating Behaviour (i) Density and sex ratio do not affect mating, except at low densities. Demographic stochasticity in the form of sex ratio fluctuations at low population density can lead to an observed Allee effect. The effect of local group density and sex ratio on mating behaviour and male mating success of a laboratory-adapted strain of B. tryoni was examined in laboratory cages. In the laboratory-adapted strain of B. tryoni used in this study, a group of one female and one male was sufficient for a good chance of mating success. The proportion of females mated and male mating success was not significantly affected by density or sex ratio, although variability in male mating success was higher at low density. This could indicate that mating success of B. tryoni can be reduced when local group density is low owing to decreased frequency in encounters between males and females. (ii) Mass-reared males exhibit aberrant mating behaviour, but this does not reduce mating success. Strong artificial selection in mass-rearing facilities may lead to decreased competitiveness of sterile males released in SIT programs as a result of alteration or loss of ecological and behavioural traits required in the field. The effects of domestication and irradiation on the mating behaviour of males of B. tryoni were investigated by caging wild, mass-reared and sterile (mass-reared and gammairradiated) males with wild females. Mating behaviour of mass-reared males was different from that of wild males, but behaviour of wild and sterile males was similar. Mass-reared males were found to engage in mounting of other males much more frequently than wild and sterile males, and began calling significantly earlier before darkness. Male calling did not appear to be associated with female choice of mating partners, although this does not exclude the possibility that calling is a cue used by females to discriminate between mating partners. Conditions used to domesticate and rear large quantities of B. tryoni for SIT may select for an alternative male mating strategy, with mass-reared males calling earlier and exercising less discrimination between potential mating partners. Despite differences in behaviour of wild, mass-reared and sterile males, frequency of successful copulations and mating success were similar. (iii) Pheromone-calling by males was increased in larger aggregations but this did not result in significantly more female visits. Finally, large laboratory cages with artificial leks were used to investigate the importance in B. tryoni of male group size for female visitation at lek sites and initiation of male pheromone-calling. Calling propensity of male B. tryoni was increased by the presence of conspecific males. Females visited the largest lek more frequently than single males, but there was no correlation between lek size and female visitation. Female B. tryoni had a limited capacity to perceive a difference between the number of calling males; female visitation at leks was only weakly associated with male calling, suggesting that lek size and the number of pheromone-calling males may not be the only factor important in locating mates in B. tryoni. The weak, but positive correlation between male calling and female visitation may indicate that passive attraction maintains lek-mating in B. tryoni. Further studies are essential on mating behaviour of B. tryoni, including identification of male mating aggregations in the field, measurement of habitat variables associated with male aggregations, the influence of density on wild B. tryoni mating success, and the role of pheromone-calling, in order to optimise use of SIT for control of this pest.
3

Dispersal and mating behaviour of Queensland fruit fly, Bactrocera tryoni(Froggatt) (Diptera: Tephritidae): Implicationsfor population establishment and control.

Weldon, Christopher William January 2005 (has links)
The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), a major pest of horticulture in eastern Australia, is a relatively poor coloniser of new habitat. This thesis examines behavioural properties that might limit the ability of B. tryoni to establish new populations. As the potential for B. tryoni to establish an outbreak population may be most directly limited by mechanisms associated with dispersal and mating behaviour, these two factors were the focus of this research project. The relevance of dispersal and mating behaviour for control of outbreak populations was assessed. Dispersal (i) Dispersal patterns of males and females are not different. Dispersal of post-teneral male B. tryoni from a point within an orchard near Richmond, New South Wales, was monitored following temporally replicated releases. Application of sterile insect technique (SIT) requires knowledge of dispersal from a release point so that effective release rates can be determined. In addition, dispersal following introduction to new habitat can lead to low or negative population growth and an Allee effect. In Spring and Autumn, 2001 � 2003, three different strains of B. tryoni were released: (1) wild flies reared from infested fruit collected in the Sydney Basin; (2) a laboratory-reared strain with a colour mutation (white marks); and (3) sterile flies obtained by gamma-irradiation of a mass-reared strain. Dispersal was monitored using a grid of traps baited with the male attractant, cuelure. During the majority of releases, flies were massmarked using a self-marking technique and fluorescent pigment powder to enable identification of recaptured flies. A preliminary study found that fluorescent pigment marks had no effect on adult survival and marks did not fade significantly in the laboratory over a period of five weeks after eclosion. As cuelure repels inseminated sexually mature female B. tryoni, unbaited, coloured flat sticky traps, and black and yellow sticky sphere traps baited with a food lure (protein autolysate solution) were used to supplement traps baited with cuelure. The effectiveness of these two sticky trap types was assessed, and recaptures used to compare patterns of dispersal from a release point by male and female B. tryoni. Fluorescent yellow (chartreuse), green, and clear unbaited flat sticky traps were relatively ineffective for monitoring dispersal of sterile male and female B. tryoni, recapturing only 0.1% of released sterile flies. Monitoring dispersal with sticky ball traps baited with protein autolysate solution was more successful, with yellow spheres and black spheres recapturing 1.7% and 1.5%, respectively. Trap colour had no effect on recaptures on flat sticky traps or sticky spheres. Equal recapture rates on yellow and black sticky sphere traps suggests that the odour of yeast autolysate solution was more important than colour for attraction of post-teneral flies to traps. Using the results of recaptures on odoriferous black and yellow sticky sphere traps within one week of release, regression equations of male and female recaptures per trap were found to be similar (Figure 4-3). This is the first study to clearly indicate that post-teneral dispersal patterns of male and female B. tryoni released from a point do not differ, enabling the use of existing models to predict density of both sexes of B. tryoni following post-teneral dispersal. (ii) Males disperse further in Spring than in Autumn, but this is not temperature-related. Analysis of replicated recaptures in traps baited with cuelure revealed that dispersal of male B. tryoni in an orchard near Richmond, New South Wales, was higher in Spring than in Autumn (Figure 5-6). As the maximum daily temperature was significantly higher in Spring than in Autumn this result was unexpected, since earlier studies have found that B. tryoni disperse at the onset of cool weather in search of sheltered over-wintering sites. Dispersal of post-teneral B. tryoni may have been affected by habitat suitability; it was found that seasonal trends in dispersal could have been influenced by local habitat variables. Low mean dispersal distances in Autumn may be explained by the presence of fruiting hosts in the orchard, or the availability of resources required by over-wintering flies. There was no significant correlation between temperature and mean dispersal distance, suggesting that higher rates of dispersal cannot be explained by temperature-related increases in activity. Recapture rate per trap was significantly negatively correlated with increasing daily maximum and average temperature. This may have consequences for detection of B. tryoni outbreaks in quarantine areas due to reduced cuelure trap efficiency. (iii) Maturity and source variation affect dispersal and response to cuelure. This research indicated that most male and female B. tryoni do not disperse far from a release point, suggesting that an invading propagule would not spread far in the first generation. However, there is considerable variation in flight capability among individuals. Comparison of wild, laboratory-reared white marks, and gamma-irradiated sterile male B. tryoni indicated that mean dispersal distance and redistribution patterns were not significantly affected by fly origin. Despite no difference in dispersal distance from the release point, recaptures of wild and sterile males per Lynfield trap baited with cuelure were highest within one week after release, whereas recaptures of white marks males per trap increased in the second week. This result may offer evidence to support the hypothesis that sterile male B. tryoni respond to cuelure at an earlier age. Rearing conditions used to produce large quantities of males for sterilisation by gamma-irradiation may select for earlier sexual maturity. Mating Behaviour (i) Density and sex ratio do not affect mating, except at low densities. Demographic stochasticity in the form of sex ratio fluctuations at low population density can lead to an observed Allee effect. The effect of local group density and sex ratio on mating behaviour and male mating success of a laboratory-adapted strain of B. tryoni was examined in laboratory cages. In the laboratory-adapted strain of B. tryoni used in this study, a group of one female and one male was sufficient for a good chance of mating success. The proportion of females mated and male mating success was not significantly affected by density or sex ratio, although variability in male mating success was higher at low density. This could indicate that mating success of B. tryoni can be reduced when local group density is low owing to decreased frequency in encounters between males and females. (ii) Mass-reared males exhibit aberrant mating behaviour, but this does not reduce mating success. Strong artificial selection in mass-rearing facilities may lead to decreased competitiveness of sterile males released in SIT programs as a result of alteration or loss of ecological and behavioural traits required in the field. The effects of domestication and irradiation on the mating behaviour of males of B. tryoni were investigated by caging wild, mass-reared and sterile (mass-reared and gammairradiated) males with wild females. Mating behaviour of mass-reared males was different from that of wild males, but behaviour of wild and sterile males was similar. Mass-reared males were found to engage in mounting of other males much more frequently than wild and sterile males, and began calling significantly earlier before darkness. Male calling did not appear to be associated with female choice of mating partners, although this does not exclude the possibility that calling is a cue used by females to discriminate between mating partners. Conditions used to domesticate and rear large quantities of B. tryoni for SIT may select for an alternative male mating strategy, with mass-reared males calling earlier and exercising less discrimination between potential mating partners. Despite differences in behaviour of wild, mass-reared and sterile males, frequency of successful copulations and mating success were similar. (iii) Pheromone-calling by males was increased in larger aggregations but this did not result in significantly more female visits. Finally, large laboratory cages with artificial leks were used to investigate the importance in B. tryoni of male group size for female visitation at lek sites and initiation of male pheromone-calling. Calling propensity of male B. tryoni was increased by the presence of conspecific males. Females visited the largest lek more frequently than single males, but there was no correlation between lek size and female visitation. Female B. tryoni had a limited capacity to perceive a difference between the number of calling males; female visitation at leks was only weakly associated with male calling, suggesting that lek size and the number of pheromone-calling males may not be the only factor important in locating mates in B. tryoni. The weak, but positive correlation between male calling and female visitation may indicate that passive attraction maintains lek-mating in B. tryoni. Further studies are essential on mating behaviour of B. tryoni, including identification of male mating aggregations in the field, measurement of habitat variables associated with male aggregations, the influence of density on wild B. tryoni mating success, and the role of pheromone-calling, in order to optimise use of SIT for control of this pest.
4

Alfalfa Aphid Complex

Knowles, Tim C. 08 1900 (has links)
4 pp. / The alfalfa aphid discussed in this publication includes blue alfalfa aphid, pea aphid, and the spotted alfalfa aphid. This publication discusses the biology of these alfalfa aphids, the damages they cause, the resistant varieties and biological control, and their monitoring and treatments.
5

Detection of Spotted-wing Drosophila (Drosophila suzukii) in Indiana blueberry orchards using degree-day models and molecular assays

Zihan Hong (14212145) 09 December 2022 (has links)
<p>  </p> <p>Spotted-wing Drosophila (SWD), <em>Drosophila suzukii</em> (Matsumura), is an economically-important pest of small fruits worldwide. Currently, timing of management is based on morphological identification of adult flies captured in baited monitoring traps; however, distinguishing SWD from other native drosophilids in traps is a time-consuming process that requires magnification. And a degree-day model that could help small fruit growers understand and predict the seasonal activity of this pest has not been developed for Indiana. Due to the low tolerance for maggots in fruit market, most small fruit growers rely on intensive, insecticide applications on a calendar-based schedule without guidance on the activity levels of SWD. </p> <p>A total of 6,051 SWD adults were monitored weekly using commercial Scentry traps at three highbush blueberry orchards during May to August. I applied the published SWD developmental thresholds of 7.2 °C (lower) and 31.5 °C (upper) and the single-sine method to calculate accumulated degree days in the year of 2021 and 2022. A predictive model from two years of data at three locations exhibited an S-shaped curve, with 5%, 25%, and 50% of adults detected at ~907, 1,293, and 1,523 CDD, respectively. By examining infestations in three varieties, ‘Bluecrop’, ‘Blueray’, and ‘Elliot’, I found that blueberry infestation rate increased as the trap captures increased. The use of early-ripening highbush blueberry varieties can reduce infestation and regardless of variety, as berries became softer, the number of SWD egg scars in berries increased.</p> <p>DNA-based diagnostic methods, like loop-mediated isothermal amplification (LAMP), have the potential to improve SWD detection by replacing morphological identification with DNA-based identification. Positive results of the LAMP assay are based on a visible color change from pink to yellow when focal DNA is present. I tested the reliability of LAMP results using SWD DNA and then evaluated the sensitivity of LAMP in discriminating between SWD and two native drosophilids common captured in monitoring traps in Indiana, <em>Drosophila affinis</em> and <em>D. simulans</em>. I found the LAMP assay can quickly and accurately identify SWD with as little as 0.1 ng/μl of DNA. Following optimization, the assay also suggested success in discriminating between SWD and these two native species: it only requires an individual fly, DNA extraction is not necessary. </p> <p>By better predicting seasonal SWD activity and optimizing DNA-based diagnostics for this pest, this study can help improve the timely detection of SWD and the management in small fruit systems. </p>
6

Chemical Ecology of Rhizophagus grandis (Coleoptera: Monotomidae), and its Application to the Biological Control of Dendroctonus micans (Coleoptera: Scolytinae)/Etude des médiateurs chimiques chez Rhizophagus grandis (Coleoptera : Monotomidae) et application à la lutte biologique contre Dendroctonus micans (Coleoptera : Scolytinae)

Meurisse, Nicolas 15 February 2008 (has links)
The Eurasian spruce bark beetle Dendroctonus micans is a major pest of spruce which is expanding its range in France, Turkey, England and Wales. Its monospecific predator Rhizophagus grandis has followed naturally the bark beetle into most areas and, since the 1960s, has also been mass-produced and successfully released within newly infested locations. In this scope, the development of an effective trapping method would be very useful to assess the bark-beetle presence at previously uninfested sites, or predator establishment after release or natural spread. We demonstrated the efficiency of oxygenated monoterpenes-baited kairomone traps to monitor R. grandis in various epidemiological conditions, including areas localized behind or at the limit of the pest’s distribution, or in areas where artificial releases were performed. Because the predator is strictly species-specific, another exciting possibility offered by the kairomone trapping is the indirect monitoring of the pest itself in areas of unknown status (e.g. areas under colonization, or considered as at risk at medium- term). R. grandis is also considered as one of the most valuable natural enemies to strike aggressive North-American Dendroctonus species. In this respect, R. grandis has been recently applied in a neo-classical biological program against the red turpentine beetle D. valens, which invaded China from North America in the late 1990’s. In laboratory tests conducted on pine logs in the laboratory, or on living pine trees in the field, we demonstrated that R. grandis adults can successfully enter and reproduce into D. valens galleries. In Europe, R. grandis is the only species regularly found in the brood systems of D. micans, where adults and larvae attack the gregarious larvae of their prey. In such enclosed systems, R. grandis’ functional response is therefore influenced by various interrelated components, such as the prey density, the predator density, or the prey distribution. Measuring the predator’s success in terms of larval survival and growth rates, we demonstrated the time spent by R. grandis larvae to wound and kill their prey to be the main factor limiting their development. This factor may be considerably influenced by the proportions of diseased, wounded or molting prey rise in the brood system, for instance as a result of an increase in prey density, or due to the presence of conspecific adults (which wound their prey but do not consume them entirely). Furthermore, our tests suggest that no cannibalism or noticeable intraspecific competition occurred between R. grandis larvae, whereas some lighter mode of competition probably took place. R. grandis also exhibits a reproductive numerical response to prey density, which mainly relies on the perception of chemical stimuli and inhibitors released in the bark beetle brood system. In the current study, we developed a non-destructive approach to follow the dynamics of volatile compound production, using sequential sample collection on SPME fibers. Our tests demonstrated that the larval activity of D. micans or D. valens strongly influences the release of some oxygenated monoterpenes. However, our attempts to correlate the relative quantities of some identified chemicals to offspring production were less successful as it concerns the identification of potential oviposition stimuli and inhibitors. The problematic rose by the progression of D. micans, as well as detailed results of each of the described above studies are discussed in the two published papers and the three manuscripts forming this thesis. Bringing all these studies together, several perspectives are also presented in the general discussion. / Ravageur des épicéas, Dendroctonus micans est toujours en voie d’extension en France, en Turquie, en Angleterre et au Pays de Galles. Dans la plupart de ces zones, le dendroctone est accompagné de manière naturelle par son prédateur monospécifique, Rhizophagus grandis. Depuis les années 1960, le prédateur a également fait l’objet d’une production de masse et de programmes de lâchers dans les zones d’arrivée récente du scolyte. Dans le cadre de la lutte biologique contre D. micans, les gestionnaires forestiers doivent donc estimer au plus tôt la présence du ravageur dans des zones jusque là indemnes, mais également vérifier l’établissement du prédateur par progression naturelle ou résultant d’introductions délibérées. Dans la présente étude, nous avons démontré l’efficacité de pièges d’interception appatés à l’aide de monoterpènes oxygénés pour la capture de R. grandis. Celle-ci s’est faite dans différentes conditions épidémiologiques, incluant notamment des zones situées en arrière du front de progression du scolyte et des zones où des lâchers artificiels ont été réalisés. Comme R. grandis est strictement inféodé au dendroctone, un autre avantage de la technique est la possibilité de réaliser un dépistage indirect du ravageur dans les zones où son statut est incertain (zones en cours de colonisation, ou considérées comme à risque à moyen terme). Par ailleurs, R. grandis est également considéré comme un des meilleurs ennemis naturels potentiels pour lutter contre d’autres espèces de Dendroctonus aggressifs. Dans cette optique, R. grandis a été récemment utilisé dans un programme de lute biologique contre D. valens, ravageur invasif arrivé en Chine dans la fin des années 1990 en provenance d’Amérique du Nord. Nous avons démontré la capacité de R. grandis à s’introduire et à se reproduire dans les galeries de D. valens lors de tests de laboratoire, mais aussi sur des arbres vivants en pinèdes. En Europe, R. grandis est strictement inféodé aux galeries de D. micans, où larves et adultes du prédateur s’attaquent aux larves grégaires du scolyte. Dans ce système clos, la réponse fonctionelle de R. grandis est influencée par plusieurs facteurs étroitement corrélés, la densité de proies, la densité de prédateurs, et la distribution des proies. En mesurant l’efficacité de prédation de R. grandis en termes de survie des larves et de taux de croissance, nous avons démontré l’influence sur leur développement du temps passé par les larves à blesser et à tuer leurs proies. Ce facteur est par ailleurs fortement dépendant de la proportion de larves malades, blessées ou en cours de mue au sein du système ; une proportion qui peut augmenter en réponse à une augmentation de la densité de proies, ou lorsque des adultes sont présents (ceux-ci blessent les proies mais ne les consomment pas entièrement). Enfin, nos tests suggèrent qu’il n’existe que peu de cannibalisme ou de compétition intraspécifique entre larves de R. grandis, tandis que des modes de compétition moins importants prennent vraisemblablement place. R. grandis présente également une réponse numérique reproductive à la densité de proies disponibles, principalement basée sur la perception de stimuli et d’inhibiteurs présents dans les galeries du scolyte. Par la collecte de composés volatils présents dans ces systèmes à l’aide de fibres SPME, nous avons développé une méthode non-destructive pour suivre la dynamique de production des médiateurs chimiques. Nos tests ont démontré que l’activité des larves de D. micans ou D. valens influence fortement la dynamique de production de certains monoterpènes oxygénés. En revanche, il n’a pas été été possible de corréler les différents composés identifiés au nombre de larves de R. grandis présentes dans le système. La problématique soulevée par la progression de D. micans, de même que les résultats détaillés de chacune des études décrites ci-dessus sont discutés dans les deux papiers publiés et les trois manuscrits formant cette thèse. Les différentes perspectives apportées par ce travail sont également présentées dans la discussion générale.
7

Využití nástrojů projektového managementu v praxi / The Use of Metohods of the Project Management in Company

Krčmář, Vít January 2015 (has links)
Dissertation deals with a draft of the system for monitoring and planning of attendance of promoters on the stores of the Slovakian store chain NAY, where the project management is used for securing of versatilely effective project. PEST, SWOT, RIPRAN of analysis and analysis of risks are used in this draft. It contains the plan of solution from the schematic imaging to the graphic previews and time schedule of realization. This is the real project from practice which should be realized based on this dissertation and commercially spread and innovated.
8

Chemical ecology of rhizophagus grandis (Coleoptera: Monotomidae) and its application to the biological control of dendroctonus micans (Coleoptera: Scolytinae) / Etudes des médiateurs chimiques chez rhizophagus grandis (Coleoptera: Monotomidae) et application à la lutte biologique contre dendroctonus micans (Coleoptera: Scolytinae)

Meurisse, Nicolas 15 February 2008 (has links)
The Eurasian spruce bark beetle Dendroctonus micans is a major pest of spruce which is expanding its range in France, Turkey, England and Wales. Its monospecific predator Rhizophagus grandis has followed naturally the bark beetle into most areas and, since the 1960s, has also been mass-produced and successfully released within newly infested locations. <p>In this scope, the development of an effective trapping method would be very useful to assess the bark-beetle presence at previously uninfested sites, or predator establishment after release or natural spread. We demonstrated the efficiency of oxygenated monoterpenes-baited kairomone traps to monitor R. grandis in various epidemiological conditions, including areas localized behind or at the limit of the pest’s distribution, or in areas where artificial releases were performed. Because the predator is strictly species-specific, another exciting possibility offered by the kairomone trapping is the indirect monitoring of the pest itself in areas of unknown status (e.g. areas under colonization, or considered as at risk at medium- term).<p>R. grandis is also considered as one of the most valuable natural enemies to strike aggressive North-American Dendroctonus species. In this respect, R. grandis has been recently applied in a neo-classical biological program against the red turpentine beetle D. valens, which invaded China from North America in the late 1990’s. In laboratory tests conducted on pine logs in the laboratory, or on living pine trees in the field, we demonstrated that R. grandis adults can successfully enter and reproduce into D. valens galleries. <p>In Europe, R. grandis is the only species regularly found in the brood systems of D. micans, where adults and larvae attack the gregarious larvae of their prey. In such enclosed systems, R. grandis’ functional response is therefore influenced by various interrelated components, such as the prey density, the predator density, or the prey distribution. Measuring the predator’s success in terms of larval survival and growth rates, we demonstrated the time spent by R. grandis larvae to wound and kill their prey to be the main factor limiting their development. This factor may be considerably influenced by the proportions of diseased, wounded or molting prey rise in the brood system, for instance as a result of an increase in prey density, or due to the presence of conspecific adults (which wound their prey but do not consume them entirely). Furthermore, our tests suggest that no cannibalism or noticeable intraspecific competition occurred between R. grandis larvae, whereas some lighter mode of competition probably took place. <p>R. grandis also exhibits a reproductive numerical response to prey density, which mainly relies on the perception of chemical stimuli and inhibitors released in the bark beetle brood system. In the current study, we developed a non-destructive approach to follow the dynamics of volatile compound production, using sequential sample collection on SPME fibers. Our tests demonstrated that the larval activity of D. micans or D. valens strongly influences the release of some oxygenated monoterpenes. However, our attempts to correlate the relative quantities of some identified chemicals to offspring production were less successful as it concerns the identification of potential oviposition stimuli and inhibitors. <p>The problematic rose by the progression of D. micans, as well as detailed results of each of the described above studies are discussed in the two published papers and the three manuscripts forming this thesis. Bringing all these studies together, several perspectives are also presented in the general discussion. <p>/<p>Ravageur des épicéas, Dendroctonus micans est toujours en voie d’extension en France, en Turquie, en Angleterre et au Pays de Galles. Dans la plupart de ces zones, le dendroctone est accompagné de manière naturelle par son prédateur monospécifique, Rhizophagus grandis. Depuis les années 1960, le prédateur a également fait l’objet d’une production de masse et de programmes de lâchers dans les zones d’arrivée récente du scolyte.<p>Dans le cadre de la lutte biologique contre D. micans, les gestionnaires forestiers doivent donc estimer au plus tôt la présence du ravageur dans des zones jusque là indemnes, mais également vérifier l’établissement du prédateur par progression naturelle ou résultant d’introductions délibérées. Dans la présente étude, nous avons démontré l’efficacité de pièges d’interception appatés à l’aide de monoterpènes oxygénés pour la capture de R. grandis. Celle-ci s’est faite dans différentes conditions épidémiologiques, incluant notamment des zones situées en arrière du front de progression du scolyte et des zones où des lâchers artificiels ont été réalisés. Comme R. grandis est strictement inféodé au dendroctone, un autre avantage de la technique est la possibilité de réaliser un dépistage indirect du ravageur dans les zones où son statut est incertain (zones en cours de colonisation, ou considérées comme à risque à moyen terme).<p>Par ailleurs, R. grandis est également considéré comme un des meilleurs ennemis naturels potentiels pour lutter contre d’autres espèces de Dendroctonus aggressifs. Dans cette optique, R. grandis a été récemment utilisé dans un programme de lute biologique contre D. valens, ravageur invasif arrivé en Chine dans la fin des années 1990 en provenance d’Amérique du Nord. Nous avons démontré la capacité de R. grandis à s’introduire et à se reproduire dans les galeries de D. valens lors de tests de laboratoire, mais aussi sur des arbres vivants en pinèdes. <p>En Europe, R. grandis est strictement inféodé aux galeries de D. micans, où larves et adultes du prédateur s’attaquent aux larves grégaires du scolyte. Dans ce système clos, la réponse fonctionelle de R. grandis est influencée par plusieurs facteurs étroitement corrélés, la densité de proies, la densité de prédateurs, et la distribution des proies. En mesurant l’efficacité de prédation de R. grandis en termes de survie des larves et de taux de croissance, nous avons démontré l’influence sur leur développement du temps passé par les larves à blesser et à tuer leurs proies. Ce facteur est par ailleurs fortement dépendant de la proportion de larves malades, blessées ou en cours de mue au sein du système ;une proportion qui peut augmenter en réponse à une augmentation de la densité de proies, ou lorsque des adultes sont présents (ceux-ci blessent les proies mais ne les consomment pas entièrement). Enfin, nos tests suggèrent qu’il n’existe que peu de cannibalisme ou de compétition intraspécifique entre larves de R. grandis, tandis que des modes de compétition moins importants prennent vraisemblablement place.<p>R. grandis présente également une réponse numérique reproductive à la densité de proies disponibles, principalement basée sur la perception de stimuli et d’inhibiteurs présents dans les galeries du scolyte. Par la collecte de composés volatils présents dans ces systèmes à l’aide de fibres SPME, nous avons développé une méthode non-destructive pour suivre la dynamique de production des médiateurs chimiques. Nos tests ont démontré que l’activité des larves de D. micans ou D. valens influence fortement la dynamique de production de certains monoterpènes oxygénés. En revanche, il n’a pas été été possible de corréler les différents composés identifiés au nombre de larves de R. grandis présentes dans le système. <p>La problématique soulevée par la progression de D. micans, de même que les résultats détaillés de chacune des études décrites ci-dessus sont discutés dans les deux papiers publiés et les trois manuscrits formant cette thèse. Les différentes perspectives apportées par ce travail sont également présentées dans la discussion générale.<p> / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished

Page generated in 0.0715 seconds