• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 13
  • 12
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 132
  • 132
  • 74
  • 33
  • 31
  • 30
  • 26
  • 26
  • 22
  • 22
  • 20
  • 20
  • 20
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Vortical flow pattern analysis in pulmonary arteries after repair of tetralogy of Fallot using phase-contrast MR imaging

Yang, Tsung-Yu 18 July 2008 (has links)
Magnetic resonance imaging (MRI) is an useful technique that provides a noninvasive method in clinical applications. For the patient of tetralogy of Fallot (TOF) after repaired, turbulence and regurgitation in blood flow may appear in pulmonary arteries. In this study, phase contrast MR imaging was applied and vortical flow patterns in the pulmonary arteries of patients after repair of TOF has been investigated. There are two major part of this study. Firstly we simulated vortical flow patterns of star, focus, and saddle which are most frequently appeared in blood flow. Quadrant index has been proposed for pattern analysis. In the second part we applied these parameters to in vivo data of repaired TOF patients, and compared with other parameters such as vorticity, coefficient of variance (CV), and regurgitant fraction (RF). Our result shows that the linear correlation between the mean of CV of velocity and mean of CV of vorticity in right pulmonary artery (RPA) as well as pulmonary trunk (PT) is larger than that in left pulmonary artery (LPA). This study shows that vorticity may provide some useful information of flow patterns and therefore helps doctors in clinical diagnosis
32

Simulation of Phase Contrast MRI Measurements from Numerical Flow Data / Simulering av faskontrast-MRT mätningar från numeriska flödesdata

Petersson, Sven January 2008 (has links)
<p>Phase-contrast magnetic resonance imaging (PC-MRI) is a powerful tool for measuring blood flow and has a wide range of cardiovascular applications. Simulation of PC-MRI from numerical flow data would be useful for addressing the data quality of PC-MRI measurements and to study and understand different artifacts. It would also make it possible to optimize imaging parameters prior to the PC-MRI measurements and to evaluate different methods for measuring wall shear stress.</p><p>Based on previous studies a PC-MRI simulation tool was developed. An Eulerian-Lagrangian approach was used to solve the problem. Computational fluid dynamics (CFD) data calculated on a fix structured mesh (Eulerian point of view) were used as input. From the CFD data spin particle trajectories were computed. The magnetization of the spin particle is then evaluated as the particle travels along its trajectory (Lagrangian point of view).</p><p>The simulated PC-MRI data were evaluated by comparison with PC-MRI measurements on an in vitro phantom. Results indicate that the PC-MRI simulation tool functions well. However, further development is required to include some of the artifacts. Decreasing the computation time will make more accurate and powerful simulations possible. Several suggestions for improvements are presented in this report.</p>
33

Assessment of Pulse Wave Velocity in the Aorta by using 4D Flow MRI

Perkiö, Mattias January 2014 (has links)
The purpose of this master thesis was to evaluate the estimation of pulse wave velocity (PWV) in the aorta using 4D flow MRI. PWV is the velocity of the pressure wave generated by the heart during systole and is a marker of arterial stiffness and a predictor of cardiovascular disease (CVD). PWV can in principle be estimated based on the time (travel-time) it takes for the pulse wave to travel a fixed distance (travel-distance), or based on the distance the pulse wave travels during a fixed time. In the commonly used time-to-travel-a-fixed-distance approach, planes are placed at two or more locations along the aorta. The travel-time is found by studying velocity waveforms at these pre-defined locations over time and thereby by estimating the time-difference for the pressure wave to reach each of these locations. In the distance-travelled-in-a-fixed-time approach, the pulse wave is located by studying at the velocity along the aorta at pre-defined instances in time. The travel-distance for the pulse wave between two instances in time is set as the difference in location of the pulse wave, where the location is identified as the location when the velocity has reached a predefined baseline. The specific aims of this thesis was to investigate the effect of using multiple locations as well as the effects of temporal and spatial resolution in the time-to-travel-a-fixed-distance approach, and to evaluate the possibility of using the distance-travelled-in-a-fixed-time approach. Additionally, the possibility of combining the two approaches was investigated. The study of using multiple locations revealed that more planes reduces the uncertainty of PWV estimation. Temporal resolution was found to have a major impact on PWV estimation, whereas spatial resolution had a more minor effect. A method for estimating PWV using 4D flow MRI using the distance-travelled-in-a-fixed-time approach was presented. Values obtained were compared favourably against previous findings and reference values, in the case of healthy young volunteers. The combination of the time-to-travel-a-fixed-distance and distance-travelled-in-a-fixed-time approaches appears feasible.
34

Illustrative Flow Visualization of 4D PC-MRI Blood Flow and CFD Data

Born, Silvia 21 October 2014 (has links) (PDF)
Das zentrale Thema dieser Dissertation ist die Anwendung illustrativer Methoden auf zwei bisher ungelöste Probleme der Strömungsvisualisierung. Das Ziel der Strömungsvisualisierung ist die Bereitstellung von Software, die Experten beim Auswerten ihrer Strömungsdaten und damit beim Erkenntnisgewinn unterstützt. Bei der illustrativen Visualisierung handelt es sich um einen Zweig der Visualisierung, der sich an der künstlerischen Arbeit von Illustratoren orientiert. Letztere sind darauf spezialisiert komplizierte Zusammenhänge verständlich und ansprechend zu vermitteln. Die angewendeten Techniken werden in der illustrativen Visualisierung auf reale Daten übertragen, um die Effektivität der Darstellung zu erhöhen. Das erste Problem, das im Rahmen dieser Dissertation bearbeitet wurde, ist die eingeschränkte Verständlichkeit von komplexen Stromflächen. Selbstverdeckungen oder Aufrollungen behindern die Form- und Strömungswahrnehmung und machen diese Flächen gerade in interessanten Strömungssituationen wenig nützlich. Auf Basis von handgezeichneten Strömungsdarstellungen haben wir ein Flächenrendering entwickelt, das Silhouetten, nicht-photorealistische Beleuchtung und illustrative Stromlinien verwendet. Interaktive Flächenschnitte erlauben die Exploration der Flächen und der Strömungen, die sie repräsentieren. Angewendet auf verschiedene Stromflächen ließ sich zeigen, dass die Methoden die Verständlichkeit erhöhen, v.a. in Bereichen komplexer Strömung mit Aufwicklungen oder Singularitäten. Das zweite Problem ist die Strömungsanalyse des Blutes aus 4D PC-MRI-Daten. An diese relativ neue Datenmodalität werden hohe Erwartungen für die Erforschung und Behandlung kardiovaskulärer Krankheiten geknüpft, da sie erstmals ein dreidimensionales, zeitlich aufgelöstes Abbild der Hämodynamik liefert. Bisher werden 4D PC-MRI-Daten meist mit Werkzeugen der klassischen Strömungsvisualisierung verarbeitet. Diese werden den besonderen Ansprüchen der medizinischen Anwender jedoch nicht gerecht, die in kurzer Zeit eine übersichtliche Darstellung der relevanten Strömungsaspekte erhalten möchten. Wir haben ein Werkzeug zur visuellen Analyse der Blutströmung entwickelt, welches eine einfache Detektion von markanten Strömungsmustern erlaubt, wie z.B. Jets, Wirbel oder Bereiche mit hoher Blutverweildauer. Die Grundidee ist hierbei aus vorberechneten Integrallinien mit Hilfe speziell definierter Linienprädikate die relevanten, d.h. am gefragten Strömungsmuster, beteiligten Linien ausgewählt werden. Um eine intuitive Darstellung der Resultate zu erreichen, haben wir uns von Blutflußillustrationen inspirieren lassen und präsentieren eine abstrakte Linienbündel- und Wirbeldarstellung. Die Linienprädikatmethode sowie die abstrakte Darstellung der Strömungsmuster wurden an 4D PC-MRI-Daten von gesunden und pathologischen Aorten- und Herzdaten erfolgreich getestet. Auch die Evaluierung durch Experten zeigt die Nützlichkeit der Methode und ihr Potential für den Einsatz in der Forschung und der Klinik. / This thesis’ central theme is the use of illustrative methods to solve flow visualization problems. The goal of flow visualization is to provide users with software tools supporting them analyzing and extracting knowledge from their fluid dynamics data. This fluid dynamics data is produced in large amounts by simulations or measurements to answer diverse questions in application fields like engineering or medicine. This thesis deals with two unsolved problems in flow visualization and tackles them with methods of illustrative visualization. The latter is a subbranch of visualization whose methods are inspired by the art work of professional illustrators. They are specialized in the comprehensible and esthetic representation of complex knowledge. With illustrative visualization, their techniques are applied to real data to enhance their representation. The first problem dealt with in this thesis is the limited shape and flow perception of complex stream surfaces. Self-occlusion and wrap-ups hinder their effective use in the most interesting flow situations. On the basis of hand-drawn flow illustrations, a surface rendering method was designed that uses silhouettes, non-photorealistic shading, and illustrative surface stream lines. Additionally, geometrical and flow-based surface cuts allow the user an interactive exploration of the surface and the flow it represents. By applying this illustrative technique to various stream surfaces and collecting expert feedback, we could show that the comprehensibility of the stream surfaces was enhanced – especially in complex areas with surface wrap-ups and singularities. The second problem tackled in this thesis is the analysis of blood flow from 4D PC-MRI data. From this rather young data modality, medical experts expect many advances in the research of cardiovascular diseases because it delivers a three-dimensional and time-resolved image of the hemodynamics. However, 4D PC-MRI data are mainly processed with standard flow visualizaton tools, which do not fulfill the requirements of medical users. They need a quick and easy-to-understand display of the relevant blood flow aspects. We developed a tool for the visual analysis of blood flow that allows a fast detection of distinctive flow patterns, such as high-velocity jets, vortices, or areas with high residence times. The basic idea is to precalculate integral lines and use specifically designed line predicates to select and display only lines involved in the pattern of interest. Traditional blood flow illustrations inspired us to an abstract and comprehensible depiction of the resulting line bundles and vortices. The line predicate method and the illustrative flow pattern representation were successfully tested with 4D PC-MRI data of healthy and pathological aortae and hearts. Also, the feedback of several medical experts confirmed the usefulness of our methods and their capabilities for a future application in the clinical research and routine.
35

Metric Optimized Gating for Fetal Cardiac MRI

Jansz, Michael 01 January 2011 (has links)
Phase-contrast magnetic resonance imaging (PC-MRI) can provide a complement to echocardiography for the evaluation of the fetal heart. Cardiac imaging typically requires gating with peripheral hardware; however, a gating signal is not readily available in utero. In this thesis, I present a technique for reconstructing time-resolved fetal phase-contrast MRI in spite of this limitation. Metric Optimized Gating (MOG) involves acquiring data without gating and retrospectively determining the proper reconstruction by optimizing an image metric, and the research in this thesis describes the theory, implementation, and evaluation of this technique. In particular, results from an experiment with a pulsatile flow phantom, an adult volunteer study, in vivo application in the fetal population, and numerical simulations are presented for validation. MOG enables imaging with conventional PC-MRI sequences in the absence of a gating signal, permitting flow measurements in the great vessels in utero.
36

Metric Optimized Gating for Fetal Cardiac MRI

Jansz, Michael 01 January 2011 (has links)
Phase-contrast magnetic resonance imaging (PC-MRI) can provide a complement to echocardiography for the evaluation of the fetal heart. Cardiac imaging typically requires gating with peripheral hardware; however, a gating signal is not readily available in utero. In this thesis, I present a technique for reconstructing time-resolved fetal phase-contrast MRI in spite of this limitation. Metric Optimized Gating (MOG) involves acquiring data without gating and retrospectively determining the proper reconstruction by optimizing an image metric, and the research in this thesis describes the theory, implementation, and evaluation of this technique. In particular, results from an experiment with a pulsatile flow phantom, an adult volunteer study, in vivo application in the fetal population, and numerical simulations are presented for validation. MOG enables imaging with conventional PC-MRI sequences in the absence of a gating signal, permitting flow measurements in the great vessels in utero.
37

Rapid 3D Phase Contrast Magnetic Resonance Angiography through High-Moment Velocity Encoding and 3D Parallel Imaging

January 2011 (has links)
abstract: Phase contrast magnetic resonance angiography (PCMRA) is a non-invasive imaging modality that is capable of producing quantitative vascular flow velocity information. The encoding of velocity information can significantly increase the imaging acquisition and reconstruction durations associated with this technique. The purpose of this work is to provide mechanisms for reducing the scan time of a 3D phase contrast exam, so that hemodynamic velocity data may be acquired robustly and with a high sensitivity. The methods developed in this work focus on the reduction of scan duration and reconstruction computation of a neurovascular PCMRA exam. The reductions in scan duration are made through a combination of advances in imaging and velocity encoding methods. The imaging improvements are explored using rapid 3D imaging techniques such as spiral projection imaging (SPI), Fermat looped orthogonally encoded trajectories (FLORET), stack of spirals and stack of cones trajectories. Scan durations are also shortened through the use and development of a novel parallel imaging technique called Pretty Easy Parallel Imaging (PEPI). Improvements in the computational efficiency of PEPI and in general MRI reconstruction are made in the area of sample density estimation and correction of 3D trajectories. A new method of velocity encoding is demonstrated to provide more efficient signal to noise ratio (SNR) gains than current state of the art methods. The proposed velocity encoding achieves improved SNR through the use of high gradient moments and by resolving phase aliasing through the use measurement geometry and non-linear constraints. / Dissertation/Thesis / Ph.D. Bioengineering 2011
38

Advancements to Magnetic Resonance Flow Imaging in the Brain

January 2017 (has links)
abstract: Magnetic resonance flow imaging techniques provide quantitative and qualitative information that can be attributed to flow related clinical pathologies. Clinical use of MR flow quantification requires fast acquisition and reconstruction schemes, and minimization of post processing errors. The purpose of this work is to provide improvements to the post processing of volumetric phase contrast MRI (PCMRI) data, identify a source of flow bias for cine PCMRI that has not been previously reported in the literature, and investigate a dynamic approach to image bulk cerebrospinal fluid (CSF) drainage in ventricular shunts. The proposed improvements are implemented as three research projects. In the first project, the improvements to post processing are made by proposing a new approach to estimating noise statistics for a single spiral acquisition, and using the estimated noise statistics to generate a mask distinguishing flow regions from background noise and static tissue in an image volume. The mask is applied towards reducing the computation time of phase unwrapping. The proposed noise estimation is shown to have comparable noise statistics as that of a vendor specific noise dynamic scan, with the added advantage of reduced scan time. The sparse flow region subset of the image volume is shown to speed up phase unwrapping for multidirectional velocity encoded 3D PCMRI scans. The second research project explores the extent of bias in cine PCMRI based flow estimates is investigated for CSF flow in the cerebral aqueduct. The dependance of the bias on spatial and temporal velocity gradient components is described. A critical velocity threshold is presented to prospectively determine the extent of bias as a function of scan acquisition parameters. Phase contrast MR imaging is not sensitive to measure bulk CSF drainage. A dynamic approach using a CSF label is investigated in the third project to detect bulk flow in a ventricular shunt. The proposed approach uses a preparatory pulse to label CSF signal and a variable delay between the preparatory pulse and data acquisition enables tracking of the CSF bulk flow. / Dissertation/Thesis / Doctoral Dissertation Biomedical Engineering 2017
39

Novas técnicas de contraste de fase para a verificação de padrões cifrados / New phase contrast techniques in the verification of encrypted patterns

José Carlos Pizolato Junior 10 February 2006 (has links)
Neste trabalho, é proposto um esquema de cifragem e decifragem baseado em uma nova técnica de contraste de fase. Esta nova técnica, denominada \"técnica de contraste de fase de ordem zero\", transforma a modulação de fase para intensidade sem a necessidade de uma placa de alteração de fase (dot dielétrico de fase) no plano de Fourier de um correlator óptico 4f. Um processo de codificação, que não utiliza qualquer cálculo iterativo, é aplicado diretamente em uma imagem em níveis de cinza para gerar uma distribuição de fase. Em seguida, um processo de cifragem é realizado através da multiplicação da distribuição de fase por uma distribuição de fase aleatória. A vantagem deste método é o fácil esquema para recuperar a informação em níveis de cinza a partir da máscara de fase decifrada. A máscara de fase cifrada e a chave do sistema foram implementadas em SLMs (Spatial Light Modulators) do tipo LCTV (Liquid Crystal TV). As formas de codificação da imagem em níveis de cinza para gerar as máscaras de fase também foram investigadas. Como resultado, foram implementados dois tipos de EODs (Elementos Ópticos Difrativos) de fase. Um deles funciona no modo de transmissão, o outro, no modo de reflexão. Resultados experimentais mostram a aplicação da técnica de contraste de fase de ordem zero na visualização da informação codificada, tanto em SLM quanto em EODs de fase, e na verificação de padrões cifrados. / In this work, an encryption and decryption scheme based on a new phase contrast technique is proposed. This new technique, called the zero order phase contrast technique, transforma the phase modulation to intensity without the necessity of a phase-changing plate (phase dielectric dot) on the Fourier plane of a 4f optical correlator. A codification process, which does not use any iterative calculation, is applied directly in a gray level image to generate a phase distribution. After this, an encryption process is applied multiplying the phase distribution by a random phase distribution. The advantage of this method is the easy scheme to recover the gray level information from the decryption phase mask. The encrypted phase mask and the key of the system were implemented on Spatial Light Modulators of the kind LCTV. The encoding ways were investigated to generate the phase masks from gray level image, by implementing two kinds of phase Diffractive Optical Elements, operating in transmission and reflection modes. Experimental results show the successfully application of the zero order phase contrast technique in the visualization of encoded information both in Spatial Light Modulators and in phase only Diffractive Optical Elements as well as in the verification of encrypted patterns.
40

Développement de méthodes d'imagerie par contraste de phase sur source X de laboratoire / Development of phase contrast imaging methods on X-ray laboratory source

Stolidi, Adrien 30 March 2017 (has links)
L'imagerie par rayons X est fortement développée dans notre société et notamment dans les domaines industriels, médicaux ou sécuritaires. L'utilisation de cette méthode d'imagerie des structures internes (pour la détection d'irrégularité, de contrôle non destructif de pièces ou de menaces) est quotidienne. En radiographie, le contraste produit sur les images est relié à la variation de l'atténuation du flux de rayons X, qui est fonction de la densité, de l'épaisseur du matériau étudié ainsi que de la longueur d'onde utilisée. Ainsi par exemple, des gaines métalliques, des os ou des armes amènent du contraste sur l'image. Mais en plus de leur atténuation, les rayons X vont subir un déphasage qui est d'autant plus important que le matériau est peu atténuant. Ce phénomène va amener du contraste, dit de phase, permettant d'imager des matériaux peu denses tels que des plastiques, composites, tissus mous ou explosifs. Ce travail de thèse présente le développement et l'adaptation, dans le domaine des rayons X, de méthodes d'imagerie par contraste de phase sur des équipements de laboratoire. Le but est de compléter, d'une manière plus accessible et quotidienne, les demandes d'évaluation non destructives. Ce manuscrit se découpe suivant deux axes portant sur la simulation d'une part et sur le développement instrumental d'autre part. Un outil de simulation a été développé portant sur une description hybride alliant optique géométrique et optique ondulatoire. Les limites du modèle et des validations sont présentées. La partie instrumentale se focalise sur l'étude de deux techniques d'imagerie différentielle de phase. La première technique est de l'interférométrie à décalage multilatéral, dont l'adaptation sur tube à rayons X est réalisée pour la première fois. Une exploitation intéressante de la redondance de la mesure que produit la technique sera notamment introduite. La deuxième approche est une technique d'interférométrie de suivi de tavelure, dont nous présenterons une nouvelle exploitation. / X-ray imaging is widely used in non-destructive testing dedicated to industry, medical or security domain. In most of the radiographic techniques, the image contrast depends on the attenuation of the X-ray beam by the sample. This attenuation is function of the density and thickness of the object and of the wavelength. Therefore, objects like metal covers, bones or weapons bring contrast on the image. In addition to attenuation, phase shifting happens, in particular for low-attenuating material. This phenomenon brings contrast, called phase contrast, and allows a X-ray image of low-attenuating material as plastics, composites, soft tissues or explosives. This work presents development and adaptation, in the X-ray domain, of phase contrast imaging techniques on laboratory equipment. The goal is to bring phase contrast imaging in daily use. This manuscript is split in two parts, simulation and instrumentation. A simulation tool has been developed, mixing geometrical optic and wave optic. Limits of the model and validation are presented. For the instrumental part, two interferometric techniques have been considered. The first one is multi-lateral interferometry where adaptation on X-ray tube is presented for the first time. Interesting use of the measurement recurrence will be introduced. The second one is speckle tracking interferometry, recently adapted on X-ray tube, for which we present new advancements.

Page generated in 0.0789 seconds