• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 18
  • 16
  • 10
  • 9
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 278
  • 278
  • 48
  • 48
  • 40
  • 37
  • 33
  • 30
  • 28
  • 27
  • 27
  • 27
  • 25
  • 23
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Crystallization and phase separation in thin film polymers

Jiang, Long January 2014 (has links)
Properties of polymers in thin films are distinct from those in the bulk due to the significant effects of free or substrate surfaces. The presence of a free surface allows an increased mobility of polymer chains in the near surface region, therefore, a lower glass transition temperature (T<sub>g</sub>). With this lower surface T<sub>g</sub>, a surface-specific crystallization phenomenon occurring at temperatures much lower than the bulk crystallization temperature (T<sub>c</sub>) in polymers including PET, PEN and PVOH has previously been observed. However, whether or not this surface-specific crystallization is a phenomenon observable in all crystallizable polymers is still a question. Similarly, due to this greater mobility, phase separation may also be able to take place in the near-surface region of a polymer blend at a temperature much lower than the bulk phase separation temperature. Yet, no such investigation on polymer blends has been carried out. In addition, it is interesting to study the thin-film behaviours of a block copolymer that undergoes both phase separation and crystallization and compare these with corresponding bulk behaviour. In this thesis, the thin-film crystallization behaviour of polyamide 12 (PA12) in spin-cast films is presented together with some investigation of crystallization of polyamide 6 (PA6) and polystyrene. Polystyrene and poly(methyl methacrylate) (PS/PMMA) systems are used to illustrate the phase behaviours specific to the near-surface region. Finally, the microstructural evolution in high hard block content thermoplastic polyurethane (TPU) thin films on annealing has also been investigated. These TPUs have hard segments (HS) extended by 2 methyl 1,3 propanediol (2M13PD) or 1,5 pentanediol (15PD). With its flexible chains, PA12 crystallizes during spin coating forming as-spin-cast crystals with morphology that varies with solvent evaporation rate and film thickness. Despite the as spin-cast crystals, the free surface allows secondary surface crystallization of PA12 at an annealing temperature (T<sub>a</sub>) roughly 20&deg;C below the bulk T<sub>c</sub>. The secondary surface crystals were indicated to exist in the most stable crystalline phase of PA12. Similar secondary surface crystallization has also been observed in the PA6 films but at a higher T<sub>a</sub> due to the higher T<sub>g</sub> of PA6. In addition, surface-specific crystals have been observed in PS (semicrystalline, likely due to some stereoregularity of composition), a polymer with bulky side groups. The PS surface crystals are, however, flat-on oriented showing the important effect of side groups on the morphology or growth shape of surface crystals. The discovery of these surface crystals supports the universality of surface specific crystallization. Using fast solvent quenching, it is possible to "freeze in" a structure containing both PS and PMMA in the near surface region. On annealing, surface-specific phase behaviours (observable as pits, undulations and aggregations) confined to the near-surface region take place first at temperatures around or just below the bulk polymer T<sub>g</sub>, while bulk vertical phase separation and dewetting of PS to PMMA, forming holes, network structures and islands, occur at temperatures well above T<sub>g</sub>. This surface specific phenomenon, being a result of the free surface, should be applicable to other phase separation systems with a free surface as well. An increase in the crystallinity of PS was found to promote the phase separation process, but the free surface effect is independent of the interplay between the crystallization and phase separation. Rather than having a two-phase morphology, as was previously observed in melt-quenched bulk samples, 2M13PD extended TPU spin-cast films showed a single-phase morphology as-spin-cast. However, the HS ordering, the formation of mesophase, the melting of HS ordered regions, and microphase mixing observed in thin films are consistent with the bulk results but with slightly different transition temperatures due to spatial confinement. With a more flexible chain extender, e.g. 15PD, the hard and soft phase separation is more limited. The thin film investigations have allowed a better understanding of the microstructural evolution in these high hard block content TPUs on annealing by imaging the morphology directly. A thin-film specific phenomenon: formation of large multilayer flat-on crystals, was also observed in these TPU thin films. These crystals are initially developed from preformed aggregations and are believed to be induced by the significant substrate effect in thin films and the free surface effect.
32

Investigation of turbulence modulation in solid-liquid suspensions using FPIV and micromixing experiments

Unadkat, Heema January 2010 (has links)
The focus of this thesis is the study of turbulent solid-liquid stirred suspensions, which are involved in many common unit operations in the chemical, pharmaceutical and food industries. The studies of two-phase flows present a big challenge to researchers due to the complexity of experiments; hence there is a lack of quantitative solid and liquid hydrodynamic measurements. Therefore, an investigation of turbulence modulation by dispersed particles on the surrounding fluid in stirred vessels has been carried out, via two-phase fluorescent Particle Image Velocimetry (FPIV) and micromixing experiments. The main property of interest has been the local dissipation rate, as well as root-mean-square (rms) velocities and turbulent kinetic energy (TKE) of the fluid. Initially a single-phase PIV study was conducted to investigate the flow field generated by a sawtooth (EkatoMizer) impeller. The purpose of this study was to gain insight into various PIV techniques before moving on to more complex two-phase flows. Subsequently stereo-, highspeed and angle-resolved measurements were obtained. The EkatoMizer formed a good case study as information regarding its hydrodynamics is not readily available in literature, hence knowledge has been extended in this area. An analysis of the mean flow field elucidated the general structure of fluid drawn into the impeller region axially and discharged radially; the latter characterised the impeller stream. The radial rms velocity was considered to represent best the system turbulence, even though the tangential rms velocity was greater close to the blade; however the radial component was more prevalent in the discharge stream. Due to differences in rms velocities, TKE estimates obtained from two and three velocity components deviated, being greater in the latter case. Integral (1-D and 2-D) length scales were overestimated by the quantity W / 2 in the impeller region. Ratios of longitudinal-to-lateral length scales also indicated flow anisotropy (as they deviated from 2:1). The anisotropy tensor showed that the flow was anisotropic close to the blade, and returned to isotropy further away from the impeller. Instantaneous vector plots revealed vortices in the discharge stream, but these were not associated with flow periodicity. Alternatively, the vortex structures were interpreted as low frequency phenomena between 0-200 Hz; macro-instabilities were found to have a high probability of occurrence in the discharge stream. Dissipation is the turbulent property of most interest as it directly influences micromixing processes, and its calculation is also the most difficult to achieve. Its direct determination from definition requires highly resolved data. Alternative methods have been proposed in the literature, namely dimensional analysis, large eddy simulation (LES) analogy and deduction from the TKE balance. All methods were employed using 2-D and 3-D approximations from stereo-PIV data. The LES analogy was deemed to provide the best estimate, since it accounts for three-dimensionality of the flow and models turbulence at the smallest scales using a subgrid scale model. (Continues...).
33

Colloidal interfaces in confinement

Jamie, Elizabeth A. G. January 2011 (has links)
A fluid-fluid demixing colloid-polymer system provides us with an opportunity to study interfacial phenomena that cannot be observed in molecular systems due to unfavourable length and timescales. We develop such a system compatible with cells of varying dimensions, allowing us to investigate confined interfacial behaviour in real space using Confocal Scanning Laser Microscopy. The degree to which a system is affected by the sedimentation-diffusion gradient is dependent on the ratio of the suspension height to the gravitational length of the colloids. We illustrate that we may control the distance of our interface to the critical point by altering the suspension height, determining the importance of the gravitational field. Furthermore, the timescale on which the sedimentation- diffusion gradient is established is considerably longer than that of initial fluid-fluid demixing. We show that after the formation of the macroscopic interface, the system passes through a series of local mechanical equilibria on the way to achieving full equilibrium. Should the system be of sufficient height, it will pass through the gas-liquid critical point opening up new ways to study critical phenomena. The time and length scales of the fluid-fluid demixing of our system may be manipulated by altering the density and viscosity of our solvent. We exploit a slowed phase separation process to study the interplay between demixing and wetting phenomena of systems in the vicinity of a single wetting surface, and confined between two parallel plates. We demonstrate that the presence of a surface strongly affects the morphology of phase separation. The growth of the wetting layer is determined by the demixing regime of the system, and may be accelerated by hydrodynamics. The additional restriction by a second surface limits the lengthscale of coarsening domains and may further alter the mechanism of wetting layer growth.
34

Amorphization and De-vitrification in Immiscible Copper-Niobium Alloy Thin Films

Puthucode Balakrishnan, Anantharamakrishnan 05 1900 (has links)
While amorphous phases have been reported in immiscible alloy systems, there is still some controversy regarding the reason for the stabilization of these unusual amorphous phases. Direct evidence of nanoscale phase separation within the amorphous phase forming in immiscible Cu-Nb alloy thin films using 3D atom probe tomography has been presented. This evidence clearly indicates that the nanoscale phase separation is responsible for the stabilization of the amorphous phase in such immiscible systems since it substantially reduces the free energy of the undercooled liquid (or amorphous) phase, below that of the competing supersaturated crystalline phases. The devitrification of the immiscible Cu-Nb thin film of composition Cu-45% Nb has been studied in detail with the discussion on the mechanism of phase transformation. The initial phase separation in the amorphous condition seems to play a vital role in the crystallization of the thin film. Detailed analysis has been done using X-ray diffraction, transmission electron microscopy and 3D atom probe tomography.
35

Morfologie dvoukomponentních povrchových struktur / Morphology of two-component surface structures

Babjak, Viktor January 2010 (has links)
In the presented thesis we investigate heteroepitaxial growth of one element (one type of adsorbate A with negative or positive misfit relative to substrate S) and static properties of two-component surface alloy, i.e. ternary system (two types of adsorbate A and B with negative and positive misfit relative to different substrat S). We use Monte Carlo simulations for an off-lattice model in (1+1) dimensions with Lennard-Jones interaction. In case of incoherent heteroepitaxial growth we investigate formation of misfit dislocations, their influence on structure of growing film and impurity-induced formation of dislocations. Two different types of formation of dislocations are found, depending on the sign and magnitude of misfit. Simulations of static properties of two-component surface alloys show that morphology is quite different for phase separation (formation of domains consist of one type of particles in direction along and vertically towards to substrate-adsorbate interface) and intermixing regime. The structures, which emerged, depend on relative misfit, interaction and concentration of individual elements.
36

Ecoulements de suspensions concentrées de globules rouges en micro-canaux : étude expérimentale / Flows of concentrated suspensions of red blood cells in microchannels : an experimental study

Roman, Sophie 13 December 2012 (has links)
Le sang est une suspension concentrée (45 % en volume) de cellules déformables, les globules rouges, dans un liquide newtonien, le plasma. Dans la microcirculation, i.e. le sous-ensemble du système de circulation sanguine où s'effectuent les échanges de matière entre le sang et les tissus, les tailles de vaisseaux sont comparables à la taille d'un globule rouge (environ 10 µm). En conséquence, les effets dynamiques liés à la présence de ces cellules induisent des comportements rhéologiques complexes, qui jouent un rôle important dans le transport de l'oxygène vers les tissus. En particulier, aux bifurcations microvasculaires divergentes, les débits de globules rouges et de plasma peuvent se répartir de façon non proportionnelle entre les deux branches filles. La fraction volumique de globules rouges (hématocrite) dans l'une des branches filles est alors plus élevée que celle de la branche d'entrée, et la fraction volumique dans l'autre branche y est plus faible. Cet effet, connu sous le nom d'effet de séparation de phase, induit une très grande hétérogénéité de l'hématocrite d'un vaisseau à l'autre dans la microcirculation. Il induit également un couplage entre l'architecture du réseau microvasculaire et la dynamique de l'écoulement sanguin dans ce réseau. L'objectif de ce travail de thèse est d'étudier finement l'effet de séparation de phase in vitro, dans un régime représentatif des conditions physiologiques, au moyen de dispositifs microfluidiques modélisant les bifurcations microvasculaires et de suspensions de globules rouges. Dans ce but, un dispositif expérimental microfluidique a d'abord été élaboré. Puis, les aspects métrologiques spécifiques aux suspensions concentrées ont été abordés afin de quantifier les paramètres de l'écoulement. En particulier, la technique de dual-slit a été comprise et optimisée, assurant une mesure précise de profils de vitesse de globules rouges en microcanaux. Des métrologies spécifiques à nos conditions expérimentales ont également été mises en place pour déterminer l'hématocrite. Ces techniques ont été validées par vérification du principe de conservation de la masse entre les trois branches d'une bifurcation, et elles nous ont permis de caractériser les écoulements de globules rouges dans des micro-canaux de différentes tailles (10 à 100 µm), et ce pour de larges gammes de débits et de concentrations. Enfin, l'écoulement de suspensions de globules rouges a été étudié au niveau de micro-bifurcations, dans l'objectif de caractériser l'effet de séparation de phase pour des tailles de canaux et des gammes d'hématocrites qui n'ont pas été étudiés auparavant en conditions d'écoulement maîtrisées. / Blood is a concentrated suspension (45% by volume) of deformable red blood cells, flowing in a Newtonian fluid called plasma. The microcirculation is the part of the blood circulation system where the exchanges of material (e.g. nutrients, oxygen) between the blood and tissues take place. The microvessels are characterized by diameters less than 100 microns, which is similar in size to the size of a red blood cell ( 10 microns). As a result, the presence of these cells considerably influences the dynamics of microvascular flows and induces complex rheological behaviors. In particular, at diverging microvascular bifurcations, red blood cells and plasma may be nonproportionally distributed between two daughter vessels : one gets a higher red blood cell volume fraction (hematocrit) than the feeding vessel, while the other gets a lower one. This effect, known as the phase separation effect, causes a tremendous heterogeneity of the hematocrit among vessels in microvascular networks and induces a coupling between the microvascular architecture and the blood flow dynamics. The aim of this thesis is to investigate the phase separation effect in vitro, in physiological conditions, using red blood cell suspensions and microfluidic devices modeling microvascular bifurcations. For this purpose, a microfluidic experimental device was first developed. Then the metrological aspects specific to concentrated suspensions were addressed in order to quantify all the flow parameters. In particular, the dual-slit technique has been understood and optimized, ensuring accurate measurement of velocity profiles of red blood cells in microchannels. Measurement methods for our experimental conditions were also implemented to determine the hematocrit. All these techniques have been validated by verification of the principle of mass conservation between the three branches of a bifurcation. They allowed us to characterize the flow of red blood cells in microchannels of different sizes (10 to 100 microns) and for wide ranges of flow rates and concentrations. Finally, the flow of red blood cell suspensions was investigated at micro-bifurcations, with the aim of characterizing the phase separation effect for channel sizes and hematocrit ranges never studied in controlled flow conditions.
37

Mapeamento dinâmico da distribuição de pressão interfacial de argamassas em squeeze flow. / Dynamic interfacial pressure mapping of mortars undergoing squeeze flow.

Grandes, Franco Ancona 20 March 2019 (has links)
Argamassas no estado fresco são suspensões heterogêneas multifásicas com grande extensão granulométrica, tendo um comportamento relativamente complexo. Para a sua caracterização reológica já é empregado o ensaio de squeeze flow, método normalizado (ABNT NBR 15839/2010) que fornece informações importantes sobre o fluxo das argamassas em condições similares às de aplicação prática. No entanto, alguns fenômenos relevantes relacionados ao squeeze flow de suspensões não podem ser diretamente avaliados somente através da resposta padrão do ensaio (curva carga ou tensão vs. deslocamento), como o tipo de fluxo e a ocorrência de separação de fases, não havendo ainda um método consolidado para investigação destes efeitos. Neste contexto, uma técnica de mapeamento dinâmico da distribuição de pressão interfacial é apresentada como ferramenta para a complementação do método, visando permitir uma análise mais aprofundada durante o ensaio de squeeze flow em argamassas, nas configurações de área e de volume constante, que podem fornecer informações diferentes. Um método de quantificação gravimétrica da separação de fases foi empregado ainda para verificação do fenômeno. Essa metodologia inovadora requer desenvolvimento, e dessa forma são analisados, além da influência de variáveis do material, aspectos do ensaio e diferentes procedimentos de tratamento e calibração dos dados desenvolvidos para análise dos resultados. Modelos teóricos são utilizados para a comparação das distribuições de pressão experimentais com previsões para fluidos de comportamento conhecido, o que ajuda a indicar o tipo de fluxo predominante. O método desenvolvido mostrou grande potencial para a análise de fluxos complexos, sobretudo suspensões concentradas, e contribui com a ampliação do conhecimento sobre o comportamento reológico de argamassas e os fatores que o influenciam. / Mortars while in fresh state are multiphasic heterogeneous suspensions with wide granular extension, presenting a relatively complex behavior. For rheological evaluation the squeeze flow test is already employed, being a standard test (ABNT NBR 15839/2010) and providing relevant information about the flow behavior of mortars under conditions which are similar to those in practical situations. Nevertheless, important phenomena related to the squeeze flow of suspensions cannot be directly assessed by the usual results from the test (load or stress vs. displacement curves), like type of flow and the occurrence of phase separation. There is not yet a stablished method for the investigation of these effects. In this context, a dynamic pressure mapping technique is presented as a tool in addition to the method, aiming to achieve a more thorough analysis during the squeeze flow of mortars, both in constant area and constant volume configuration, which can provide different information. A phase separation quantification method was employed to validate the phenomenon. This original methodology require development, thus aspects regarding the test setup are analyzed, besides the influence of material, and different data treatment and calibration procedures developed for the analysis of test results. Theoretical models are employed for comparison between experimental pressure distribution and predictions for fluids with known behavior, which aids in the determination of flow regime predominance. The developed method has shown great potential for the analysis of complex fluids, especially concentrated suspensions, and contributes to the expansion of knowledge on the rheological behavior of mortars and the influencing factors.
38

Novel biocidal formulation

Wills, Peter January 2013 (has links)
In this modern age, society has become much more aware of the danger bacteria can have on people's health. Personal and household antimicrobial formulations are commonly used within the home to lower the levels of harmful bacteria such as E. Coli, Salmonella and Pseudomonas. The active which kills the bacteria within the formulation is described as a biocide. This research looks at the often neglected potential of cationic polyelectrolyte as a biocide, firstly within solution and secondly in creating an antimicrobial surface. The solution properties and antimicrobial activity for a range of commercially available cationic polyelectrolytes (polymeric quaternary ammonium compounds (QAC) and biguanides) of differing molecular weights were investigated. All polyelectrolytes were observed to have some level of antimicrobial activity. The second phase of this research investigated polyelectrolyte/surfactant/water mixture of similar charge (cationic). Two QAC surfactants were investigated: Alkyl (C12 70%; C14 30%) dimethyl benzyl ammonium chloride (BAC) and Didecyldimethylammonium chloride (DDQ). At a critical concentration, these mixtures segregatively phase separate into a surfactant rich upper phase and polyelectrolyte rich lower phase. This phase separation phenomenon was investigated in respect of surfactant and polyelectrolyte type as well as polyelectrolyte molecular weight. Surfactant type was observed to be the dominant factor in determining the onset of phase separation and by mixing different ratios of surfactants the ability to tune this phase separation concentration was shown. Dilute solutions of these mixtures well below their respective phase separation concentration were then deposited onto glass substrates via a drop cast or inkjet printer method. The surfactant/polyelectrolyte film composites left after drop evaporation ranged from an amorphous film to nodular like structures. The ability to order/structure actives onto a surface could alter active adhesion and surface roughness properties of the film. This change in surface property could consequently affect antimicrobial performance.
39

Ecoulements de suspensions de globules rouges dans des réseaux de micro-canaux : hétérogénéités et effets de réseau / Red blood cell suspensions flow in micro-channel networks : heterogeneities and network effects

Merlo, Adlan 13 November 2018 (has links)
Depuis les observations par Poiseuille au XVIIIe de réseaux microvasculaires de petits vertébrés,la microcirculation sanguine a fait l'objet d'abondantes études. Une spécificité mise en avant par le médecin français est la forte hétérogénéité de la distribution des globules rouges dans ces réseaux. En dépit du lien étroit qui lie la fraction volumique locale des globules rouges(hématocrite) à l'oxygénation des tissus environnants, le couplage entre l'architecture microvasculaire et la micro-hémodynamique est encore mal compris. Le sang est un fluide complexe composé de globules rouges, cellules très déformables, suspendus dans du plasma.Dans les vaisseaux de petits diamètres, i.e. du même ordre de grandeur voire plus petits que la taille caractéristique d'un globule rouge (~10µm), le sang possède des propriétés rhéologiques atypiques induites par la structuration locale de l'écoulement et les hétérogénéités d'hématocrite qui en résultent dans la section droite. Ces hétérogénéités se traduisent, aux bifurcationsdivergentes, par une répartition non proportionnelle des débits de globules rouges et de plasma entre les deux branches filles. L'hématocrite de l'une d'elles est alors plus élevé que celui de labranche d'entrée, alors qu'il est plus faible dans l'autre branche. Cet effet, connu sous le nom d'effet de séparation de phase, induit une très grande hétérogénéité de l'hématocrite à l'échelle du réseau. L'objectif de cette thèse est d'étudier l'apparition de ces hétérogénéités, de l'échelle du vaisseau à l'échelle du réseau, dans des conditions expérimentales contrôlées et pour des régimes de confinement et d'hématocrite représentatifs des écoulement sanguins de la partie terminale du lit microvasculaire (artérioles, capillaires et veinules de diamètres inférieurs à 20 µm).De nombreuses données expérimentales ont été acquises in vivo, mais elles sont sujettes à de fortes incertitudes quant à la forme et aux dimensions de la section droite des vaisseaux, mais aussi soumises aux effets de régulations physiologiques des débits (e.g. par vasoconstriction ou vasodilatation). A notre connaissance, du fait des contraintes expérimentales inhérentes aux régimes de confinement et d'hématocrite des plus petits vaisseaux de la microcirculation, très peu d'études in vitro dans ces conditions ont été menées. Tout d'abord, nous présentons les profils de vitesse des globules rouges et les profils d'hématocrite obtenus grâce à une nouvelle méthode de mesure de concentration développée pendant ce travail, dans des canaux uniques de taille comprise entre 5 et 20µm, et dans une large gamme d'hématocrite. Nous proposons une paramétrisation générale semi-empirique de ces profils, qui prend en compte la présence d'unecouche d'exclusion plasmatique, observée quelle que soit la taille du canal aux faibleshématocrites. Ensuite, nous présentons une étude paramétrique de l’effet de séparation dephase. Nous montrons que les résultats obtenus sont indépendants, dans les régimes étudiés, de l’angle de la bifurcation et du débit de la branche d’entrée. Ces résultats sont en général en bon accord avec un modèle simple qui s’appuie sur la paramétrisation précédente des profils d'hématocrite et de vitesse des globules rouges et suppose l'existence d'une ligne séparatrice de fluides dans la section droite de la branche mère. Ces résultats suggèrent que les globules rouges peuvent être décrits par un fluide équivalent, y compris dans les conditions de très fortconfinement. Enfin, nous reportons pour la première fois des résultats quantitatifs liés à la distribution de l'hématocrite dans des réseaux modèles. Nous montrons notamment quel'asymétrie des profils d'hématocrite dans les branches amonts distribue les globules rouges en enrichissant le cœur du réseau au détriment des bords. Nous comparons nos résultats à ceux d’un modèle non-linéaire de type réseau classique proposant des corrections prenant en compte cette asymétrie. / Since the very first observations of microvascular networks in small animals by Jean-MariePoiseuille in the XVIIIth century, the blood microcirculation has been extensively studied. One ofthe most striking feature highlighted by the French physicist is the highly heterogeneousdistribution of the red blood cells throughout microvessel networks. Despite the intimate linkbetween local red blood cell volume fraction (hematocrit) and surrounding tissue oxygenation, thecoupling between microvascular architecture and micro-hemodynamics is still poorly understood.Blood is a complex fluid, mainly composed of highly deformable red blood cells suspended inplasma. Thus in vessels with small diameter, i.e. of same order or smaller than the characteristicsize of a single red blood cell (~ 10µm), blood exhibits non-standard rheological propertiesinduced by the structuration of the flow and the heterogeneous distribution of the hematocrit withinthe cross section. This heterogeneity triggers a non propotionnal distribution of red blood cell andplasma flow rates between the daughter branches of a diverging bifurcation. One of the daughterbranch has a higher hematocrit than the feeding branch, while the other has a lower hematocrit.This effect, known as the phase separation effect, leads to hematocrit heterogeneities at networkscale. The goal of this thesis is to study the emergence of these heterogeneities, from the scale ofa single vessel to the scale of a network, in controlled experimental conditions and regimes ofconfinement and hematocrit representative of blood flow in the terminal parts of the microvascularbed (arterioles, capillaries and venules with diameters below 20µm). Many experimental data havebeen obtained textit{in vivo}, but these are subject not only to strong uncertainties regarding theshape and the dimensions of the vessel cross section, but also to physiological flow rate regulation(e.g. through vasoconstriction or vasolidation). To our knowledge, due to the highly challengingexperimental constraints, only very few in vitro studies have been performed. First, we presentred blood cell velocity and hematocrit profiles, obtained thanks to a new measure of red blood cellconcentration developped during this work in single channels of size ranging from 5 to 20 micronsand for a broad range of hematocrit values. We derive a semi-empirical parameterization of theseprofiles that takes into account the presence of a cell-free layer observed at low hematocrit values,for the whole range of channel sizes studied. We then present a parametric study of phaseseparation. Our results show that in the studied regimes, this effect depends neither on thebifurcation angle nor on the entry branch flow rate. These results are in general in good agreementwith a simple model that assumes the existence of a fluid separating streamline in the entrybranch cross section and relies on the above parameterization of the red blood cell velocity andhematocrit profiles. These results suggest that in spite of their cellular nature the red blood cellscan be treated as an equivalent fluid even in very high confinement regimes. Finally, we report forthe first time quantitative results related to the hematocrit distribution in model networks. Wenotably show that asymmetry of the hematocrit profile in the upstream branches leads the redblood cells into the center of the network while its edges are depleted. Our results are comparedwith a classical non-linear network type model corrected to take this asymmetry into account.
40

Phase separation in giant vesicles

Li, Yanhong January 2008 (has links)
Giant vesicles may contain several spatial compartments formed by phase separation within their enclosed aqueous solution. This phenomenon might be related to molecular crowding, fractionation and protein sorting in cells. To elucidate this process we used two chemically dissimilar polymers, polyethylene glycol (PEG) and dextran, encapsulated in giant vesicles. The dynamics of the phase separation of this polymer solution enclosed in vesicles is studied by concentration quench, i.e. exposing the vesicles to hypertonic solutions. The excess membrane area, produced by dehydration, can either form tubular structures (also known as tethers) or be utilized to perform morphological changes of the vesicle, depending on the interfacial tension between the coexisting phases and those between the membrane and the two phases. Membrane tube formation is coupled to the phase separation process. Apparently, the energy released from the phase separation is utilized to overcome the energy barrier for tube formation. The tubes may be absorbed at the interface to form a 2-demensional structure. The membrane stored in the form of tubes can be retracted under small tension perturbation. Furthermore, a wetting transition, which has been reported only in a few experimental systems, was discovered in this system. By increasing the polymer concentration, the PEG-rich phase changed from complete wetting to partial wetting of the membrane. If sufficient excess membrane area is available in the vesicle where both phases wet the membrane, one of the phases will bud off from the vesicle body, which leads to the separation of the two phases. This wetting-induced budding is governed by the surface energy and modulated by the membrane tension. This was demonstrated by micropipette aspiration experiments on vesicles encapsulating two phases. The budding of one phase can significantly decrease the surface energy by decreasing the contact area between the coexisting phases. The elasticity of the membrane allows it to adjust its tension automatically to balance the pulling force exerted by the interfacial tension of the two liquid phases at the three-phase contact line. The budding of the phase enriched with one polymer may be relevant to the selective protein transportation among lumens by means of vesicle in cells. / In der wässrigen Lösung im Inneren von Riesenvesikeln können sich mehrere, räumlich getrennte Phasen ausbilden. Dieses Phänomen könnte im Zusammenhang stehen mit wichtigen Prozessen innerhalb von Zellen, wie etwa Fraktionierung und Sortieren von Proteinen, oder etwa das sog. “Molecular Crowding”. Wir studieren diesen Prozess am Beispiel von zwei unterschiedlichen Polymeren, Polyethylen Glycol (PEG) und Dextran, innerhalb von Riesenvesikeln. Die Dynamik der Phasentrennung dieser eingeschlossenen Polymerlösung lässt sich untersuchen, indem man die Vesikel einer hypertonischen Lösung aussetzt. Durch die Dehydrierung entsteht dabei überschüssige Membranfläche. Je nach Grenzflächenspannung zwischen den koexistierenden Phasen, sowie zwischen der Membran und den beiden Phasen, wird diese überschüssige Fläche entweder zur Ausbildung röhrchenartiger Strukturen verwendet, oder aber es stellen sich morphologische Veränderungen am Vesikel ein. Die Ausbildung der Membranröhrchen ist offenbar gekoppelt an den Phasentrennungsprozess: Die Energie, die bei Phasentrennung frei wird, dient offenbar dazu, die Energiebarriere der Röhrchenbildung zu überwinden. Die Röhrchen können an der Grenzfläche absorbiert werden und dort eine zweidimensionale Struktur ausbilden. Durch kleine Störungen in der Spannung kann die in Form von Röhrchen gespeicherte Membran wieder in deren Oberfläche zurückgezogen werden. Desweiteren wurde in diesem System ein Benetzungsübergang entdeckt, der bisher nur in wenigen experimentellen Systemen beobachtet werden konnte: Erhöht man die Polymerkonzentration, so geht die PEG-reiche Phase von vollständiger zu unvollständiger Benetzung der Membran über. Steht in einem Vesikel, in dem beide Phasen die Membran benetzen, ausreichend überschüssige Membranfläche zur Verfügung, so wird sich eine Phase aus dem Vesikelkörper herauswölben, was zur Trennung der beiden Phasen führt. Dieser benetzungsinduzierte Auswölbungsprozess wird durch die Oberflächenenergie bestimmt und von der Membranspannung moduliert. Dies konnte experimentell an Vesikeln gezeigt werden, die zwei Phasen beinhalten, indem durch eine Mikropipette ein Unterdruck erzeugt wurde. Die Oberflächenenergie kann durch Auswölbung einer der Phasen signifikant verringert werden, da die Kontaktfläche zwischen den koexistierenden Phasen verkleinert wird. Die Elastizität der Membran erlaubt es, die Spannung automatisch anzupassen, sodass die ziehende Kraft ausgeglichen wird, die durch die Grenzflächenspannung der beiden flüssigen Phasen an der drei-Phasen Kontaktlinie ausgeübt wird. Die Auswölbung einer durch Polymere angereicherten Phase könnte relevant sein für den selektiven Transport von Proteinen mit Vesikeln in der Zelle.

Page generated in 0.0859 seconds