• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 32
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nanosecond time-resolved resonance Raman and ab initio studies of triplet states and radical cations of halobiphenyls and the radicalcations of phenothiazine, promazine, and chloropromazine

潘多海, Pan, Duohai. January 2000 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
12

Synthesis and monoamine uptake inhibiting properties of perisubstituted tricyclic compounds

Peters, Jennifer Margaret, 1956- January 1988 (has links)
The synthesis of 1-methyl-promazine, 4-hydroxymethyl-iminodibenzyl, and 4-bromo-5-trimethylsilyl-iminodibenzyl via dilithiation and ¹H-NMR's are described. Molecular modeling was done for the latter compound. The heat of dissociation was 30.6 kcal/mole for the lowest energy conformer. Rotational energies were examined for three bonds. The IC₅₀ values for inhibition of neurotransmitter uptake by rat brain synaptosomes were determined for a series of 1-substituted promazines, and 4-substituted imipramines. 1-Substituted promazines were fair inhibitors of serotonin uptake with an average IC₅₀ of 2000 nm. Their potency for inhibiting norepinephrine uptake was difficult to assess due to poor assay reproducibility, and the average IC₅₀ was estimated at 200 to 1700 nm. Serotonin, but not norepinephrine, uptake inhibition was increased with additional ring substitution at C(2) with a trifluoromethyl group. The 4-substituted imipramines were equal or slightly decreased in potency to unsubstituted imipramine for uptake inhibition of both neurotransmitters. IC₅₀'s were also reported for imipramine and desipramine.
13

Nanosecond time-resolved resonance Raman and ab initio studies of triplet states and radical cations of halobiphenyls and the radical cations of phenothiazine, promazine, and chloropromazine /

Pan, Duohai. January 2000 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 137-146).
14

I. The effect of trace minerals dicalcium phosphate and phenothiazine on the resistance of grazing lambs to Haemonchus contortus infection II. Studies of the effects of certain stress factors on the resistance of lambs to Haemonchus contortus infection /

Emerick, Royce J. January 1956 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1957. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 113-117).
15

Substitution Effects of Phenothiazine and Porphyrin Dyes in Dye-sensitized Solar Cells

Hart, Aaron S. 12 1900 (has links)
The details of dye sensitized solar cells was explained and phenothiazine and porphyrin based dyes were synthesized for use in DSSCs. DSSCs offer a unique and cost effective method of renewable energy. DSSCs are characterized through various tests, with the overall efficiency, η, bearing the greatest importance. Incident photon to current conversion efficiency, or IPCE, is also another important characterization of DSSCs. Effect of positioning of the cyanoacrylic acid anchoring group on ring periphery of phenothiazine dye on the performance of dye sensitized solar cells (DSSCs) is reported. The performances of the cells are found to be prominent for solar cells made out of Type-1 dyes compared to Type-2 dyes. This trend has been rationalized based on spectral, electrochemical, computational and electrochemical impedance spectroscopy results. Free-base and zinc porphyrins bearing a carboxyl anchoring group at the para, meta, or ortho positions of one of the meso-phenyl rings were synthesized for DSSCs. Photoelectrochemical studies were performed after immobilization of porphyrins onto nanocrystalline TiO2. The performance of DSSCs with the porphyrin anchoring at the para or meta position were found to greatly exceed those in the ortho position. Additionally, zinc porphyrin derivatives outperformed the free-base porphyrin analogs, including better dye regeneration efficiency for the zinc porphyrin derivatives and for the meta and para derivatives through electrochemical impedance spectroscopy studies. The overall structure-performance trends observed for the present porphyrin DSSCs have been rationalized based on spectral, electrochemical, electrochemical impedance spectroscopy and transient spectroscopy results.
16

Synthesis and Studies of AzaBODIPY Derived Donor-Acceptor Systems for Light Induced Charge Separation

Collini, Melissa A. 12 1900 (has links)
The efficiency and mechanism of electron- and energy transfer events occurring in both in natural and synthetic donor-acceptor systems depend on their distance, relative orientation, and the nature of the surrounding media. Fundamental knowledge gained from model studies is key in building efficient energy harvesting and optoelectronic devices. Faster charge separation and slower charge recombination in donor-acceptor systems is often sought out. In our continued effort to build donor-acceptor systems using near-IR sensitizers, in the present study, we report ground and excited state charge transfer in newly synthesized, directly linked, tetrads featuring bisdonor (donor = phenothiazine and ferrocene), BF2-chelated azadipyrromethane (azaBODIPY) and C60 entities. The tetrads synthesized using multi-step synthetic procedure revealed strong charge transfer interactions in the ground state involving the donor and azaBODIPY entities. The near-IR emitting azaBODIPY acted as a photosensitizing electron acceptor along with fullerene while the phenothiazine and ferrocene entities acted as electron donors. The triads (bisdonor-azaBODIPY) and tetrads revealed ultrafast photoinduced charge separation leading to D•+-azaBODIPY•–-C60 and D•+-azaBODIPY-C60•– (D = phenothiazine or ferrocene) charge separated states from the femtosecond transient absorption spectral studies in both polar and nonpolar solvent media. The charge separated states populated the triplet excited state of azaBODIPY prior returning to the ground state.
17

Polyaniline analogs polymers and nanocomposites coating for corrosion protection applications

Awoyemi, Raymond Femi 13 August 2024 (has links) (PDF)
The economic impact of metallic corrosion on global infrastructure, spanning pipeline networks, bridges, refineries, and automobiles, is considerable. In 2013, it accounted for 3.4% of the global GDP, totaling US$ 2.5 trillion. Organic coatings have gained significance as a prominent strategy to address this widespread issue. Polyaniline (PANI), a conducting polymer, has long been recognized as an effective anti-corrosion coating. This study explores the potential of polyaniline analogs and their nanocomposites as candidates for protective organic coatings in corrosion control applications. Initially, the investigation focuses on conducting polymers with side chains comprising long, branched alkyl groups as potential corrosion suppression coatings. These polymers, containing carbazole, phenothiazine, and phenoxazine cores, serve as analogs to polyaniline. Prepared through the Buchwald/Hartwig coupling reaction, these polymers demonstrated promising corrosion suppression capabilities, as tested by potentiodynamic polarization studies and electrochemical impedance spectroscopy (EIS). Morphological characterization using scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that phenothiazine- and carbazole-containing polymers exhibit excellent corrosion resistance, with phenothiazine displaying a protection efficiency (PE) of 95.9% and 89.0% respectively, outperforming polyaniline coating. Further exploration involved the derivatives of phenothiazine-based PANI analogs, specifically poly(heterocyclic diphenylamine) (poly-HDA), prepared through the Buchwald/Hartwig coupling reaction. Evaluation through weight loss, potentiodynamic polarization, and EIS in a 3.5 wt.% NaCl solution showcased the reduced corrosion current density on surfaces coated with long-branched alkyl-substituted phenothiazine-based PANI analogs. Moreover, the reinforcement of the phenothiazine-based PANI analog polymer was achieved by creating an epoxy-based nanocomposite with 2,5-dimethyl-1,4-phenylenediamine functionalized graphene oxide (PT/DPPD-fGO) at varying concentrations into an epoxy anticorrosive coating for AISI 4130 steel from corrosion. Results from immersion in 5 % sodium chloride solution, coupled with standard electrochemical measurements, demonstrate that PT/DPPD-fGO effectively protects AISI 4130 steel from corrosion, with coatings containing 5 % PT/DPPD-fGO exhibiting the best corrosion performance among the tested specimens. The results indicate the potential of phenothiazine- and carbazole-based PANI analogs, along with their nanocomposites, as candidates for protective organic coatings in transportation, aviation, marine, and oil and gas industrial applications.
18

Supramolecular coordination cages based on bispyridyl-ligands with redox properties

Versäumer, Marina 27 June 2016 (has links)
No description available.
19

Syntheses and DNA Interactions of Acridine and Phenothiazine Based Photosensitizers

Wilson, Beth 04 December 2006 (has links)
Photosensitizing molecules and/or metal complexes that interact with DNA via intercalation and groove binding have potential applications as molecular structural probes, as footprinting reagents and in photodynamic therapeutics. To this regard, small molecules that bind to DNA and the energetics involved in these interactions, acridine-based therapeutics, photosensitization, photodynamic therapy, phenothiazine-mediated photosensitization, DNA photocleavage reaction mechanisms and photosensitizing metal complexes are introduced in Chapter I. Next, in Chapter II, the synthesis of a photonuclease consisting of a 3,6-acridinediamine chromophore attached to four metal-coordinating imidazole rings is described. The DNA photocleavage yields, emission quantum yields, and thermal denaturation studies by this acridine-imadazole conjugate in the presence of 16 metal salts are also reported. In Chapter III is the synthesis of a bisacridine covalently tethered to a copper(II)-binding pyridine linker. Additionally, DNA photocleavage studies as well as DNA binding affinity and binding mode(s) of this bisacridine incorporating the copper(II)-binding pyridine linker are examined. The syntheses, characterization, DNA photocleavage studies, DNA thermal denaturation, and viscometric measurements of three new phenothiazinium photosensitizers are described in Chapters IV and V. Collectively, markedly enhanced DNA photocleavage yields are observed in the presence of metals (Chapters II-III) or in comparison to a parent molecule, Chapters II and IV. DNA melting isotherms show higher levels of duplex stabilization with the acridines, specifically in the presence of several metals (Chapter II-III) as well as with the phenothiazine-based ligands (Chapters IV-V). Moreover, different DNA binding modes were observed depending on metal complexation (Chapter III) and nucleic acid structure (Chapter IV). Finally, Chapter VI describes a small project implemented as a National Science Foundation pedagogical laboratory exercise in which a non-invasive procedure for DNA isolation from human cheek cells was utilized with the polymerase chain reaction to amplify alleles encoding a single nucleotide polymorphism involved in normal human color vision.
20

From Membranes to Motor Oil: Exploring the Opportunities and Limitations of Phenoxazine and Phenothiazine Antioxidants by the Application of Fundamental Physical Organic Chemistry

Farmer, Luke 23 August 2023 (has links)
Autoxidation is a radical mediated chain-process that involves initiation, propagation, branching and termination reactions and is responsible for the spontaneous peroxidation of hydrocarbons, formally appearing as RH + O₂ → ROOH. Autoxidation is a consequentially damaging process in many domains, ranging from materials to automotive transportation to biology and medicine. One of the key intermediates in the propagation of autoxidation is the peroxyl radical (ROO•) which can be targeted by radical-trapping antioxidants (RTAs) that promote chain-termination, mitigating the damage of autoxidation. Chapter 1 lays out the fundamental chemistry of both autoxidation and RTAs as well as a history of the rational design of phenol and diarylamine-type RTAs. Lipid-peroxidation (i.e. autoxidation) is a key feature of ferroptosis which is a form of cell death that has been associated with many serious conditions such as ALS, Alzheimer's, Huntington's and Parkinson's disease, and lipid-soluble RTAs such as Vitamin E have been shown to acutely suppress ferroptosis. An aspect of RTA chemistry that has not been well studied/understood hitherto is their kinetic behaviour in phospholipid membranes, and we hypothesized that this would be a very relevant consideration for designing compounds that target lipid-peroxidation and ferroptosis. In Chapter 2 we systematically examine the kinetic behaviour for a series of hindered and unhindered phenolic RTAs in various mediums, particularly in phosphatidylcholine (PC) liposomes. The key chemical interaction in the PC membrane that fundamentally changed the observed kinetics of the phenolic RTAs is a very strong hydrogen-bonding interaction with the phosphate-diester headgroup that suppresses the phenols' ability to trap ROO•, an effect that was previously overlooked. In Chapter 3 we further expanded/validated the model by studying over 40 phenoxazine (PNX) and phenothiazine-based (PTZ) RTAs, which showed the quantitative/predictive capabilities of the H-bonding effect. By introducing a water-soluble co-antioxidant, Vitamin C (ascorbate), we were able to study many features of the PNX/PTZ radical intermediates with respect to their reactivity and dynamics. The PNX/PTZ were far more persistent than the Vitamin E analogue 2,2,5,7,8-pentamethyl-6-chromanol (PMC), meaning that they catalytically trapped lipid-peroxyls far more efficiently (i.e., higher turnover number). Additionally, there is strong evidence suggesting that the PNX/ascorbate synergism is a diffusion-controlled process. The study was further expanded to biological models. Ferroptosis in vitro was inhibited by every single one of these compounds, and there was a general positive correlation between RTA kinetics (kᵢₙₕ) and ferroptosis rescue potency (EC₅₀) as well as a positive correlation between lipophilicity (logP) and ferroptosis rescue potency. A lead PNX compound, 3-trifluoromethyl-8-tert-butylphenoxazine, was identified in this study on the basis of superior potency and metabolic stability. When used to treat mice with GPx4 deletion in kidneys, an in vivo model of ferroptosis, it was found to extend the life of the mice in a statistically significant fashion compared to the vehicle control. In Chapter 4 there is further elaboration on the dynamics of PNX/ascorbate synergy and a demonstration of the early works toward developing a drug-like-PNX ferroptosis inhibitor, based on the conclusions from the work in Chapter 3. In Chapters 5 and 6 the research is focused on the development novel RTAs for the application of inhibiting autoxidation in lubricants in high temperature environments. Heavy machinery and most transportation technologies require lubrication to aid safe and efficient movement, and these lubricants/greases are highly susceptible to autoxidation. Large quantities of RTA additives are expended to extend the service life of these materials and there is a constant appetite for innovation to find new and improved RTAs for improved economics and competitiveness. In Chapter 5 the behaviour of PNX and PTZ in a simulated high temperature lubricant autoxidations are analyzed, revealing that PNX is highly susceptible to direct O₂-mediated oxidation due to its rapid electron-transfer kinetics, while PTZ is far more resilient despite both compounds having nearly identical oxidation potentials. In Chapter 6, in this same context, previously unreported substituent effects are analyzed which significantly enhance the period of inhibition (tᵢₙₕ) for PTZ compounds. Particular alkyl substituents on the PTZ can increase the number of chains-trapped at high temperatures by fortuitous substituent oxidation that promotes termination, substantially improving their atom-economy. These findings prompt a broader critique of putative catalytic RTA mechanisms which have been taken for granted for nearly three decades.

Page generated in 0.0365 seconds