• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 128
  • 60
  • 17
  • 11
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 525
  • 298
  • 88
  • 85
  • 81
  • 74
  • 66
  • 52
  • 50
  • 46
  • 44
  • 42
  • 41
  • 40
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Evolutionary Ecology of Growth in Insects: What Maintains Variation in Growth Trajectories at the Phenotypic and Genotypic Levels?

Dmitriew, Caitlin 15 April 2010 (has links)
Growth rates are highly variable, both within and among genotypes and populations. The resolution of the trade-off between size and age at maturity has been the study of extensive research by life historians. The fitness advantages of large body size and rapid development time are well supported, leading to two predictions. First, realized growth rates should be maximized. Second, growth rate will be subject to strong stabilizing or directional selection, and consequently, low genetic variability. In real populations, despite the advantages of rapid growth, animals often, in fact, grow at rates lower than the maximum rate that is physiologically possible, even in the absence of external constraints on growth rate (e.g. resource restriction or risk of predation while foraging). This implies that growth may have direct fitness consequences that are independent of the size and age of maturity, thereby lowering the optimal rate of growth. In addition to inducing plastic declines in growth rate, such costs may also select for lower intrinsic rates of growth. Despite the strong fitness effects arising from attaining a large body size quickly, variation in growth rate persists at both the phenotypic and genetic levels. The evolutionary and ecological factors contributing to this variation in growth rate are the focus of this thesis. Growth rate variation in insect model species was produced by the manipulation of resource levels during development. By comparing fitness-associated traits and body composition of adults from different treatment groups, I identify direct costs of rapid growth that could explain why animals benefit from growth at submaximal rates. In the second part of the thesis, the relationship between environmental variation and genetic variance in growth rate is investigated by quantitative genetic analysis of body size at different ages and in different growth environments. The results of this analysis suggest that environmental stress can lead to increased genetic variance via decanalization. This has consequences for the evolvability of growth rates in changing environments.
62

Environmental variation and phenotypic plasticity : The effect of water visibility on body pigmentation in perch (Perca fluviatilis L.)

Gusén, Anna January 2010 (has links)
Phenotypic plasticity is defined as an organism’s ability to express differentphenotypes depending on the environment. Predation is one of the key forces inecology and can indirectly cause a change of the phenotype in fish populations.Pigmentation change in order to match the background is one type of camouflage usedin fish and other organisms. Moreover, pigmentation might depend on environmentalconditions such as turbidity and water colour that affect the light spectrum and thusthe visibility in the water. The phenotypic variation in body pigmentation of perch(Perca fluviatilis L.) has rarely been studied to this date. In this study, I examined ifbody pigmentation of perch varied between different environments and betweenstructurally different habitats (littoral/pelagic). I tested long-term (phenotypicplasticity) and short-term (physiological-behavioural) changes in pigmentation byusing long-term pre-treatments and short-term aquarium experiments. Differences instructurally-diverse habitats were investigated in an extensive field study.Furthermore, experimental results were compared to data from the field. The resultsshow that pigmentation is determined by environmental factors, such as water colouror turbidity, and by structural complexity. Since fishes adapted their pigmentation totheir visual environment, pigmentation is likely used as predator avoidancemechanism in perch. Moreover, it was demonstrated that the environmentally-inducedpigmentation pattern determines the magnitude of short-term pigmentation in perch.
63

Phenotypic and genetic diversity of pseudomonads associated with the roots of field-grown canola

Hirkala, Danielle Lynn Marie 20 November 2006 (has links)
Pseudomonads, particularly the fluorescent pseudomonads, are common rhizosphere bacteria accounting for a significant portion of the culturable rhizosphere bacteria. The presence and diversity of Pseudomonas spp. in the rhizosphere is important because of their ability to influence plant and soil health. Diversity is generated as the result of mutation, the rearrangement of genes within the genome and the acquisition of genes by horizontal transfer systems, e.g. plasmids, bacteriophages, transposons or integrons. The purpose of this study was to examine the phenotypic and genotypic diversity of a subset of pseudomonads (N=133) isolated from the rhizosphere and root-interior of four cultivars of field-grown canola. Pseudomonads were analyzed according to their 16S rRNA and cpn60 gene sequences and selected phenotypic properties (fatty acid methyl ester (FAME) profiles, antibiotic resistance, extracellular enzyme production and carbon substrate utilization). On the basis of 16S rRNA and cpn60 gene sequences, two major clusters were observed, the Pseudomonas fluorescens complex and the P. putida complex. Phylogenetic analysis of the partial gene sequences suggested that the phylogeny of root-associated pseudomonads had no effect on their associations with different cultivars or root zones (i.e. rhizosphere and root interior). Principal component analysis (PCA) of their phenotypic properties revealed little variation among the pseudomonads associated with different canola cultivars. Importantly, while little difference was observed in isolates from different cultivars significant phenotypic variation was observed in isolates from different root zones. Cluster analysis of their phenotypic properties exhibited little correlation with their phylogenetic relationships. In the majority of situations, the isolates grouped into a phylogenetic cluster had less than 75-80% similarity among their phenotypic traits despite a close evolutionary relationship as determined by 16S rRNA and cpn60 gene sequencing. The results indicated that the genotype of the rhizosphere pseudomonads was not accurately reflected in their phenotype. Analysis of the mobile genetic elements (MGEs) associated with a randomly selected subset of the pseudomonad isolates (N=66) revealed that 58% (N=38) contained plasmids, 50% (N=33) contained inducible prophages, 24% (N=16) contained integrons and 23% (N=15) contained transposons. Examination of the MGEs associated with a subset of rhizosphere pseudomonads revealed that MGEs were present in the isolates independent of the degree of similarity between their phenotypic and phylogenetic relationships. Therefore, mutation and genomic rearrangement appear to be the major influences in the observed incongruence between the phylogenetic and the phenotypic relationships of the bacteria examined.
64

Plasticity of Consumer-prey Interactions in the Sea: Chemical Signaling, Consumer Learning, and Ecological Consequences

Long, Jeremy Dillon 23 November 2004 (has links)
Marine consumers and their prey display plasticity that affects the outcomes of their dynamic interactions as well as community structure and ecosystem function. Aquatic chemical signals induced plasticity in consumers and prey from a broad range of taxonomy (phytoplankton to fishes), sizes (microscopic to macroscopic), and habitats (pelagic to benthic), and this complex plasticity strongly affected consumer-prey interactions. Two fishes,
65

Costs of Plasticity in Host Use in Butterflies

Snell-Rood, Emilie Catherine January 2007 (has links)
Phenotypic plasticity, the ability of a genotype to express different phenotypes in different environments, allows organisms to cope with variation in resources and invade novel environments. Biologists have long been fascinated with the costs and tradeoffs that generate and maintain variation in plasticity, such as possible increases in brain size and delays in reproduction associated with the evolution of learning. However, the costs of plasticity vary: many studies have failed to find costs of plasticity, the degree of costs often vary with the system or environments considered, and many costs of plasticity are variable even within the lifetime of an individual. This research adopts a developmental perspective to predict the degree and incidence of costs of plasticity, using host learning in butterflies as a case study. Learning, a mechanism of plasticity that develops through a trial-and-error sampling process, should result in developmental costs and allocation of energy towards development (at the expense of reproduction). Furthermore, costs of learning should be less pronounced in environments for which organisms have innate biases and for learned traits underlain by short-term memory, relative to long-term memory (which requires more developmental re-structuring). This research found support for all three predictions across three levels of costs: behavioral costs, tissue costs, and fecundity trade-offs. Butterflies exhibited genetic variation in their ability to learn to recognize different colored hosts. Genotypes with higher proxies for long-term memory emerged with relatively larger neural investment and smaller reproductive investment. In contrast to these costs of long-term learning, proxies of short-term learning were only correlated with increased exploration of a range of possible resources (types of non-hosts) early in the host-learning process. Family-level costs of plasticity emerged from the ability to learn to locate a red host, for which butterflies do not have an innate bias. Costs of learning were also induced by learning itself: following exposure to novel (red) host environments, individual butterflies, regardless of genetic background, increased exploratory behavior, increased neural investment, and re-allocated energy away from reproduction towards other functions (e.g., flight). Considering developmental mechanisms helps to predict how costs will influence the evolution of learning and plasticity.
66

Transvection is a plastic phenotype

Bing, Xinyang (David) 30 October 2013 (has links)
Transvection, a chromosome pairing-dependent form of trans-based gene regulation, is widespread in the Drosophila melanogaster genome. Recent studies demonstrate that transvection is sensitive to cell environment and type in D. melanogaster, implicating transvection as a complex trait. To test this possibility, we first established that trans-interactions previously documented at the Malic enzyme (Men) locus are transvection (i.e., pairing-dependent). We then characterized the sensitivity of transvection at the Men locus to changes in the environment (temperature) and genetic background (third chromosome). Transvection varied significantly across genetic backgrounds and was significantly reduced by changes in temperature, and the two factors interacted to further modify transvection, while cis-based gene regulation remained unchanged by temperature. To determine if differences in transvection observed across genetic background and temperature are related to their effects on transcription factor expression, and possibly the presence or absence of binding sites for these transcription factors within the Men locus, we tested the relationship between Men expression and five transcription factors with binding sites near the Men transcription start sit (TSS). We found correlations between the expression of at least one transcription factor, Abd-B, and the presence of binding sites for that factor, and Men expression across changes in the environment. We also determined that changes in Abd-B expression can directly affect Men expression in cis, suggesting that cis and trans-regulation can share regulatory components in at least some cases. Together, our findings stress the importance of studying genetic interactions from a dynamic perspective by incorporating both genetic and environmental variation.
67

Plastic phenotypic responses of the sea star Pisaster ochraceus to spatial and temporal variation in wave exposure

Hayne, Kurtis Unknown Date
No description available.
68

The effect of visibility and predators on foraging efficiency in littoral and pelagic perch

Karlsson, Konrad January 2012 (has links)
Phenotypic plasticity in Eurasian perch (Perca fluviatilis) can be driven by a trade-off for ecological specialisation to littoral and pelagic resources. Previous studies on perch have found that this specialisation can have different effects on linkage between the littoral and pelagic food web depending on water transparency. In this study I aimed to answer how foraging efficiency and prey preference of phenotypic divergent perch are affected by high and low water transparency, and the presence of a predator in a series of aquarium experiments. Two different phenotypes of perch were kept in littoral and pelagic environments in the lab. By presenting perch with Daphnia sp. and Ephemeroptera, either separately or combined. I found that in clear water the littoral and pelagic phenotypes were comparatively more efficient on resources that were representative of their habitats (Ephemeroptera and Daphnia, respectively) and that both phenotypes prefer Ephemeroptera over Daphnia. In low visibility the differences in foraging efficiency between phenotypes when feeding on Daphnia disappeared but remained similar to clear water when feeding on Ephemeroptera. When vision was constrained littoral and pelagic perch showed no sign of prey preferences. In the presence of a predator the difference in foraging efficiency between the phenotypes, and also prey preference disappeared. I found that littoral phenotypes interacted more with other group members than did pelagic phenotypes, when foraging on littoral prey. And for perch in general, when foraging for Daphnia the interaction among group members was markedly reduced compared to when foraging for Ephemeroptera. In this study I show that morphological adaptation and prey choice is affected by visibility and predation. I also give suggestions how and argue why this can affect linkage of food webs and the community composition in littoral and pelagic habitats.
69

Effect of Predator Diet on Predator-induced Changes in Life History and Performance of Anuran Larvae

El Balaa, Rayan 25 April 2012 (has links)
Phenotypic plasticity allows some animals to change their behavioural, morphological, performance, and life history traits in response to changes in environmental conditions such as the presence of predators. These changes can enhance survival, but come at a cost. Some of these phenotypic changes are predator and diet specific. I examined the effects of predator diet on the performance, life-history, and morphology of developing Northern Leopard Frog (Lithobates pipiens) tadpoles. Tadpoles were either exposed to cues from fish free water, cues from Brown Bullhead (Ameiurus nebulosus) fed a diet of trout pellets, or cues from A. nebulosus fed a L. pipiens tadpoles diet. Tadpoles exposed to predatory fish cues had smaller bodies, deeper tail fins, slower growth and development rates, and better rotational performance than tadpoles that were not exposed to predatory fish cues. Moreover, tadpoles appeared to differentiate between predatory fish diet and produced diet-specific responses in tail morphology and activity, although the latter effect was only marginally significant. Hatching, metamorphosis rates, and linear performance were not affected by the treatments. These results suggest that A. nebulosus can induce phenotypic changes in L. pipiens tadpoles, with some of these changes being diet specific.
70

Genotype-phenotype correlation using phylogenetic trees

Habib, Farhat Abbas, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 106-116).

Page generated in 0.0462 seconds